img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2014, Vol. 22 ›› Issue (5): 39-44.doi: 10.11872/j.issn.1005-2518.2014.05.039

• 矿产勘查与资源评价 • 上一篇    下一篇

南祁连化石沟铜矿区上石炭统克鲁克组大理岩C、O同位素特征

潘美慧1,贾志磊2,3,侯鹏博4   

  1. 1.西北师范大学地理与环境科学学院,甘肃  兰州   730070;
    2.甘肃省地质矿产勘查开发局,甘肃  兰州   730000;
    3.兰州大学地质科学与矿产资源学院,甘肃  兰州   730000;
    4.甘肃省电力设计院,甘肃  兰州   730050
  • 收稿日期:2014-07-20 修回日期:2014-08-15 出版日期:2014-10-28 发布日期:2015-01-22
  • 作者简介:潘美慧(1983-),女,安徽巢湖人,博士,讲师,从事第四纪地质学方面的研究工作.panmh@nwnu.edu.cn
  • 基金资助:

    西北师范大学青年教师科研能力提升计划骨干项目“西藏定结地区全新世风沙活动研究”(编号:NWMU-LKQN-12-21)资助.

Characteristics of C,O Isotopes in the Upper Carboniferous Keluke Formation in South Qilian Mountains

PAN Meihui1,JIA Zhilei2,3,HOU Pengbo4   

  1. 1.College of Geography and Environment Science,Northwest Normal University,Lanzhou   730070,Gansu,China;
    2.Gansu Provincial Bureau of Geology and Mineral Exploration and Development,Lanzhou   730000,Gansu,China;
    3.College of Geology and Mineral Resources,Lanzhou University,Lanzhou   730000,Gansu,China;  
    4.Gansu Electric Deign Institue,Lanzhou   730050,Gansu,China
  • Received:2014-07-20 Revised:2014-08-15 Online:2014-10-28 Published:2015-01-22

摘要:

化石沟铜矿区位于南祁连西南缘之阿尔金与南祁连构造带的交会部位,是研究祁连—柴北缘构造—岩浆系统演化的关键地区。研究区内出露地层主要为古元古界达肯大坂群、泥盆—石炭系阿木尼克组和石炭系克鲁克组,晚古生代中酸性侵入岩发育。石炭纪克鲁克组中的大理岩,受侵入岩破坏,大部分呈残留体存在,与晚古生代石英闪长岩等共同构成沿化石沟的环形构造,前人认为其属于岩浆成因的碳酸岩。本次研究分析了克鲁克组大理岩的C、O同位素组成,δ13CPDB和δ18OSMOW值分别为-9.3‰~0‰和14.44‰~31.76‰,明显区别于碳酸岩,类似于沉积的碳酸盐岩的特征。结合区域大地构造背景,认为石炭纪克鲁克组大理岩应该形成于祁连—柴北缘造山作用停止之后,古特提斯洋发育的海相环境,而部分较低的δ13CPDB和δ18OSMOW值可能与侵入的石英闪长岩岩浆热液有关。

关键词: 大理岩, C、O同位素, 海相环境, 化石沟铜矿, 南祁连

Abstract:

Huashigou copper mine is located about 120 km east of Akesai County,tectonically in the South Qilian area.The strata in the area are mainly distributed by Paleoproterozoic Dakendaban Group,Devonian-Carboniferous Amunike Formation and Carboniferous Keluke Formation.The marble,the main lithology of Carboniferous Keluke Formation,is considered to be carbonatite by former geologist as its closer relationship with quartz diorite of Huashigou copper mine.According to the determination and analysis of C,O isotopes,the result of δ13CPDB and δ18OSMOW values(-9.3‰~0‰ and 14.44‰~31.76‰ respectivly) shows that the marble belongs to carbonate rocks originate from sedimentation,and lower δ13CPDB and δ18OSMOW values is probably related to the magmatic hydrothermal of intruding of quartz diorite.

Key words: marble, C, O isotopes, marine environment, Huashigou copper mine, South Qilian Mountains

中图分类号: 

  • P618.41

[1] 陆松年,于海峰,李怀坤,等.“中央造山带” 早古生代缝合带及构造分区概述[J].地质通报,2006,25(12):1368-1380.
[2] 许志琴,杨经绥,李海兵,等.中央造山带早古生代地体构架与高压/超高压变质带的形成[J].地质学报,2006,80(12):1793-1806.
[3] 董顺利,李忠,高剑,等.阿尔金—祁连—昆仑造山带早古生代构造格架及结晶岩年代学研究进展[J].地质论评,2013,59(4):731-746.
[4] Song S G,Zhang L F,Su L,et al.Geochronology of  diamond-bearing zircons in garnetperidotite in the North Qaidam UHPM belt,North Tibetan Plateau:A record of complex histories associated with continental collision[J].Earth and Planet  Science Letters,2005,234:99-118.
[5] Zhang G B,Zhang L F,Christy A G.From oceanic subduction to continental collision:An overview of HP-UHP metamorphic rocks in the North Qaidam UHP belt,NW China[J].Journal of Asian Earth Sciences,2013,63:98-111.
[6] Yang J S,Xu Z Q,Zhang J X,et al.Tectonic significance of early Paleozoic high-pressure rocks in Altun-Qaidam-Qilian Mountains,northwest China[J].Memoirs-Geological Society of America,2001,194:151-170.
[7] 崔军文,唐哲民,邓晋福,等.阿尔金断裂系[M].北京:地质出版社,1999:39-49.
[8] 许志琴,李思田,张建新,等.塔里木地块与古亚洲/特提斯构造体系的对接[J].岩石学报,2011,27(1):1-22.
[9] 刘永顺,于海峰,辛后田,等.阿尔金山地区构造单元划分和前寒武纪重要地质事件[J].地质通报,2009,28(10):1430-1438.
[10] 贾志磊.甘肃省阿尔金山东段化石沟地区英云闪长斑岩成矿分析[J].地质论评,2013,59(S):161-163.
[11] McCrea J M.On the isotopic chemistry of carbonates and a paleotemperature scale[J].The Journal of Chemical Physics,1950,18(6):849-857.
[12] Deines P.Stable isotope Variations in Carbonatites[M]//BellK.Carbonatite and Evolution.London:Allen and Unwin,1989:301-359.
[13] Rollison  H R.岩石地球化学[M].杨学明,杨晓勇,陈双喜,译.合肥:中国科学技术大学出版社,2000.
[14] Hoefs J.Stable isotope geochemistry[M].3rd Edition.Berlin:Springer Verlag,1987:241.
[15] 傅斌,郑永飞,肖益林,等.大别山苏家河地区榴辉岩和大理岩的地球化学研究[J].地质学报,1998,72(4):323-339.
[16] Rumble D,Wang Q C,Zhang R Y.Stable isotope geochemistry of marbles from the coesite UHP terrains of  Dabieshan and Sulu,China[J].Lithos,2000,52(1/4):79-95.
[17] 冯伟民,郑永飞,周建波.大别—苏鲁造山带大理岩碳氧同位素地球化学研究[J].岩石学报,2003,19(3):468-478.
[18] Veizer J,Hoefs J.The nature of 18O/16O and 13C/12C secular trends in semdimentary carbonate rocks[J].Geochim Cosmochim Acta,1976,40:1387-1395.
[19] 李厚民,刘明军,李立兴,等.辽宁弓长岭铁矿区大理岩地质地球化学特征及其成矿意义[J].岩石学报,2012,28(11):3497-3512.
[20] 刘建明,刘家军.滇黔桂金三角区微细浸染型金矿床的盆地流体成因模式[J].矿物学报,1997,17 (4):1448-1456.
[21] Deines P,Gold D P.The change in carbon and oxygen  isotopic composition during contact metamorphism of Trenton limestone by the Mount Royal pluton[J].Geochimicaet Cosmochimica Acta,1969, 33(3):421-424.
[22] Valley J W.Stable isotope geochemistry of metamorphic rocks[J].Reviews in Mineralogy and Geochemistry,1986,16:445-489.
[23] Hudson J D.Stable isotopes and limestone lithification[J].Journal of the Geological Socitty,1997,133(16):637-660.
[24] Baker A J,Fallick A E.Evidence from Lewisian limestones for isotopically heavy carbon in two-thousand-million-year-old sea water[J].Nature,1989,337:352-354.
[25] Wright I P,Grady M M,Pillinger C T.Carbon,oxygen and nitrogen isotopic compositions of possible martian weathering products in EETA79001[J].Geochimicaet Cosmochmica Acta,1988,52(4):917-924.
[26] Deines P,Gold D P.The isotopic compositon of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon[J].Geochimicet Cosmochmica Acta,1973,37(7):1709-1733.
[27] 陈丹玲,孙勇,刘良,等.柴北缘鱼卡河榴辉岩的变质演化——石榴石成分环带及矿物反应结构的证据[J].岩石学报,2005,21(4):1039-1048.
[28] 杨经绥,许志琴,宋述光,等.青海都兰榴辉岩的发现及对中国中央造山带内高压—超高压变质带研究的意义[J].地质学报,2000,74(2):156-168.
[29] 杨经绥,许志琴,李海兵,等.我国西部柴北缘地区发现榴辉岩[J].科学通报,1998,43(14):1544-1549.
[30] 张雪亭,吕惠庆,陈正兴,等.柴北缘造山带沙柳河地区榴辉岩相高压变质岩石的发现及初步研究[J].青海地质,1999,8(2):1-13.
[31] Yang J S,Xu Z Q,Zhang J X,et al.Early Paleozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan Tibetan plateau and a paired subduction model[J].Terra Nova,2002,14(5):397-404.
[32] Zhang G B,Zhang L F,Song S G.UHP metamorphic evollution and SHRIMP geochronology of a coesite-bearing meta-ophiolitic gabbroin the North Qaidam,NW China[J].Journal of Asian Earth Sciences,2009,35(3/4):310-322.
[33] 杨经绥,宋述光,许志琴,等.柴达木盆地北缘早古生代高压—超高压变质带中发现典型的超高压矿物——柯石英[J].地质学报,2001,75(2):175-179.
[34] 杨建军,朱红,邓晋福,等.柴达木北缘石榴石橄榄岩的发现及其意义[J].岩石矿物学杂志,1994,13(2):97-105.
[35] 刘良,陈丹玲,张安达,等.阿尔金超高压(>7 GPa)片麻状(含)钾长石榴辉石岩——石榴子石出溶单斜辉石的据[J].中国科学(D 辑),2005,48(2):105-114.
[36] 宋述光,牛耀龄,张立飞,等.大陆造山运动:从大洋俯冲到大陆俯冲、碰撞、折返的时限——以北祁连山、柴北缘为例[J].岩石学报,2009,25(9):2067-2077.
[37] 吴才来,杨经绥,杨宏仪,等.北祁连东部两类Ⅰ型花岗岩定年及其地质意义[J].岩石学报,2004,20(3):425-432.
[38] 宋述光,张贵宾,张聪,等.大洋俯冲和大陆碰撞的动力学过程:北祁连—柴北缘高压—超高压变质带的岩石学制约[J].科学通报,2013,58(23):2240-2245.
[39] 郝国杰,陆松年,辛后田,等.青海都兰地区前泥盆纪古陆块的物质组成和重大地质事件[J].吉林大学学报:地球科学版,2004,34(4): 495-516.

[1] 陈磊,段宝福,吕道,曾建朋,张朔,曾兴富,黄美俊. 东天山卡拉塔格地区玉带铜矿床地质特征及成因[J]. 黄金科学技术, 2023, 31(3): 396-407.
[2] 张静静,冷成彪. 云南中甸地区斑岩铜矿床的保存与夷平面关系探讨——基于地貌因子分析[J]. 黄金科学技术, 2021, 29(3): 334-344.
[3] 刘学龙,杨富成,张昌振,罗应,王帅帅. 滇西北雪鸡坪斑岩型铜矿构造特征与成矿作用研究[J]. 黄金科学技术, 2018, 26(4): 473-480.
[4] 马宝军,陈超,牛树银,耿国建,张福祥,张建珍,孙爱群. 河北木吉村铜钼矿田构造变形及蚀变分析[J]. 黄金科学技术, 2016, 24(5): 19-25.
[5] 薛兰花,史老虎,张志军,沈柳生. 新疆卡拉盖雷铜矿隐爆角砾岩地质特征及控矿作用[J]. 黄金科学技术, 2016, 24(1): 23-27.
[6] 赵程龙,李正栋,陈玉华,保守礼,祁俊霞,张俊. 青海查涌地区铜多金属矿地质地球化学特征及找矿前景[J]. 黄金科学技术, 2013, 21(5): 34-39.
[7] 苏胜年,焦革军,王凤林,文雪峰,窦洪伟. 地球化学测量在青海查涌地区铜多金属矿中的应用[J]. 黄金科学技术, 2013, 21(4): 66-74.
[8] 甘长福,祁顺萍,米生花. 青海哈茨谱山南铜矿地质特征及成因分析[J]. J4, 2012, 20(4): 141-144.
[9] 段晋,吴鹏飞. 西藏拉桌坎铜矿床地质特征及找矿前景探讨[J]. J4, 2012, 20(3): 31-34.
[10] 赵海滨,李杰美. 新疆清水泉铜矿地质特征及成矿期次探讨[J]. J4, 2012, 20(1): 61-65.
[11] 杨瑞亭, 李志杰. 综合物化探方法在葫芦铜镍硫化物矿床勘探中的应用[J]. J4, 2009, 17(3): 40-43.
[12] 申大利, 庄勇. 没确桑昂地区铅铜多金属矿物化探异常特征及找矿前景[J]. J4, 2009, 17(3): 44-47.
[13] 王美娟,李杰美,朝银银. 我国的铁氧化物型铜——金矿床特征及研究现状[J]. J4, 2008, 16(4): 14-19.
[14] 庄勇. 喏嘿欠地区铜锡矿成矿特征及找矿标志[J]. J4, 2007, 15(6): 35-37.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!