img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2016, Vol. 24 ›› Issue (2): 51-58.doi: 10.11872/j.issn.1005-2518.2016.02.051

• 矿产勘查与资源评价 • 上一篇    下一篇

嵩山马庄地区新太古代TTG岩石成因及其地质意义

李兴隆,司荣军,毛广钰,谢翔   

  1. 河南理工大学资源环境学院,河南  焦作   454000
  • 收稿日期:2015-08-24 修回日期:2016-01-20 出版日期:2016-04-28 发布日期:2016-05-30
  • 作者简介:李兴隆(1991-),男,河南平顶山人,硕士研究生,从事岩石地球化学研究工作。1145733627@qq.com
  • 基金资助:

    河南省地质调查基金项目“河南1∶5万大口集(I49E009019)、府店(I49E009020)、江左(I49E010019)、大金店(I49E010020)幅区调”(编号:1212011120767)资助

Neoarchaean TTG Petrogenesis in Mazhuang,Songshan Area and Its Geological Significance

LI Xinglong,SI Rongjun,MAO Guangyu,XIE Xiang   

  1. College of Resources and Environments,Henan Polytechnic University,Jiaozuo   454000,Henan,China
  • Received:2015-08-24 Revised:2016-01-20 Online:2016-04-28 Published:2016-05-30

摘要:

嵩山是新太古代TTG岩石出露的典型地区之一,新太古代马庄TTG岩石分布于嵩山地区马庄一带,岩体呈灰白色,具有中粒花岗结构,片麻状构造,局部发育条带状构造。岩石地球化学研究表明,马庄TTG岩石富Na2O(4.34%~6.49%)和SiO2(>69.24%),贫铁、镁,Na2O/K2O比值较高(2.0~3.2),Al2O3含量为14.35%~17.68%,平均值为16.51%(>15%),显示弱过铝质TTG片麻岩的特征。微量元素分析显示,马庄TTG岩石稀土总量为11.57×10-6~30.94×10-6,轻重稀土强烈分异,重稀土亏损,Eu具有强烈正异常,具有高Sr、Sr/Y比值,低Cr、Yb、Y,与新生代高硅埃达克岩地球化学特征相似。由微量元素地球化学环境判别图解可知,马庄TTG岩石形成环境与岛弧火山岩相似。由此推断,马庄TTG岩体是在高压环境下由低角度俯冲的含水玄武质洋壳部分熔融而成的。

关键词: 新太古代, TTG片麻岩, 地球化学, 蒿山, 新太古代, TTG片麻岩, 地球化学, 蒿山

Abstract:

Songshan is one of the typical area where the Neoarchean TTG rocks are well exposed.Neoarchean TTG rocks in Mazhuang which are mainly distributed in Songshan with the features of grayish-white colour,medium-grained structure,gneissic and banded structure.Geochemical study shows that Mazhuang TTG rocks are featured with high concentration of Na2O(4.34%~6.49%) and SiO2(>69.24%),poor in iron and magnesium,and with high Na2O/K2O (2.0~3.2) ratio.The average content of Al2O3 is 16.51%(>15%,its range is 14.35%~17.68%),this phenomenon shows the characteristics of TTG gneiss with weak peraluminous.Trace elements analysis indicates that ΣREE is 11.57×10-6~30.94×10-6,depleted in HREE,with strong differentiation in LREE and HREE.Eu positive abnormality is obviously,high contents of Sr and Sr/Y ratio,low contents of Cr,Yb and Y,reflect that it has the similar geochemical characteristics with high silicon adakite in Cenozoic era.The formation environment of Mazhuang TTG rocks is similar with island arc volcano rock according to the environment discrimination diagram of trace element geochemical.It is concluded that Mazhuang TTG rock mass is formed by the partial melting of subducted oceanic crust which is aqueous basaltic under the high pressure.

Key words: Neoarchean, TTG gneisses, geochemical, Songshan area, Neoarchean, TTG gneisses, geochemical, Songshan area

中图分类号: 

  • P595

[1] Jahn B M,Glikson A Y,Peucat J J,et al.REE geochemistry and isotopic data of Archaean silicic volcanics and granitoids from the Pilbara Block,western Australia:Implications for the early crustal evolution[J].Geochim Cosmochim Acta,1981,45(9):1633-1652.
[2] Moyen J F,Martin H,Jayananda M.Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth:the Closepet granite (South India) [J].Precambrian Research,2001,112(1/2):87-105.
[3] 伍家善,耿元生,沈其韩,等.中朝古大陆太古宙地质特征及构造演化[M].北京:地质出版社,1998.
[4] 劳子强.登封群剖面特征及其划分[J].河南地质,1989,7(3):20-26.
[5] 劳子强,王世炎,张良,等.嵩山地区前寒武纪地质构造特征与演化[M].北京:中国环境科学出版社,1996.
[6] 李兴隆,司荣军,毛广钰,等.嵩山地区新太古宙歪咀山岩体成因及其地质意义[J].西北地质,2016,49(1):50-60.
[7] Martin H.The mechanisms of petrogenesis of the Archaean continental crustcomparison with odern processes[J].Lithos,1993,30(3):373-388.
[8] 周艳艳,赵太平,薛良伟,等.河南篙山地区新太古代TTG质片麻岩的成因及其地质意义:来自岩石学、地球化学及同位素年代学的制约[J].岩石学报,2009,25(2):331-347.
[9] 周艳艳,赵太平,薛良伟,等.河南嵩山地区新太古代斜长角闪岩的地球化学特征与成因[J].岩石学报,2009,25(11):3043-3056.
[10] Barker F.Trondhjemites:Definition,environment and hypothesis of origin[M]//Barker F.Trondhjemites,Dacites and Related Rocks.Amsterdam:Elsevier,1979:1-12.
[11] Barker F,Arth J G.Generation of trondhjemite-tonalite liquids and Archaean bimodal trondhjemite-basalt suites[J].Geology,1976,4:596-600.
[12] Atherton M P,Petford N.Generation of sodium-rich magmas from newly underplated basaltic rust[J].Nature,1993,362:144-146.
[13] Sun S S and McDonough W F.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J]//Saunders S D and Norry M J.
Magatism in ocean basins.Geological Socienty of London,1989,42:313-345.
[14] Cullers R L,Graf J L,李文达.热液体系中的稀土元素[J].国外火山地质,1987(1):20-23.
[15] Rapp R P,Shimizu N,Norman M D.Growth of early continentalcrust by partial melting of eclogite[J].Nature,2003,425:605- 609.
[16] 李孟江,王仁民,张莉.华北克拉通北缘尚义地区新太古代TTG成因分析:洋壳玄武岩不同深度下熔融的产物[J].地质通报,2012(5):686-695.
[17] Martin H,Smithies R H,Rapp R P,et al.An overview of  adakite,tonalite-trondhjemite-granodiorite (TTG) and sanukitoid:relationships and some implications for crustal evolution[J].Lithos,2005,79(1/2):1-24.
[18] Halla J,van Hunen J,Heilimo E,et al.Geochemical and numerical constraints on Neoarchean plate tectonics[J].Precambrian Research,2009,174(1/2):155-162.
[19] Moyen J F.The composite Archaean grey gneisses:Petrological significance,and evidence for a non-unique tectonic setting for Archaean crustal growth[J].Lithos,2011,123(1/4):21-36.
[20] Foley S F,Tiepolo M,Vannucci R.Growth of early continental crust controlled by melting of amphibolite in subduction zones[J].Nature,2002,417:637-640.
[21] Tatsumi Y,Ishizaka K.Origin of high-magnesian andesites in the Setouchi volcanic belt,southwest Japan,I.Petrographical and chemical characteristics[J].Earth and Planetary Science Letters,1982,60:293-304.
[22] Smithies R H.The Archaean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakite.Earth and Planetary Science Letters,2000,182(1):115-125.
[23] Van Hunen J,Van den Berg A P.Plate tectonics on the early  Earth:limitations imposed by strength and buoyancy of  subducted lithosphere[J].Lithos,2008,103(1/2):217-235.
[24] Condie K C.Archean Greenstone Belts[M].Amsterdam:Elsevier Science,1981:95-96.
[25] Condie K C.Episodic continental growth and supercontinents:A mantle avalanche connection[J].Earth and Planetary Science Letters,1998,163:97-108.

[1] 王斌, 宋明春, 刘志宁, 李健, 董磊磊, 张艺多, 蒋雷, 王润生, 董小涛, 刘家良. 胶东地区早白垩世周官高镁闪长岩体年代学、地球化学特征及其构造意义[J]. 黄金科学技术, 2024, 32(5): 798-812.
[2] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[3] 张勇, 李水平, 荆鹏, 冯攀. 河南嵩县九仗沟金矿床地球化学特征与勘查模式[J]. 黄金科学技术, 2024, 32(2): 258-269.
[4] 刘风龙, 王加恩, 刘远栋, 孙大亥, 程海燕, 胡艳华, 黄雯, 王振, 潘少军. 浙江衢州九华山侵入岩年代学和地球化学特征[J]. 黄金科学技术, 2024, 32(1): 31-40.
[5] 李利, 王国光, 李海立, 肖惠良, 陈乐柱. 赣南印支期白石钨(铜)矿床成矿岩体地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(5): 736-751.
[6] 王振, 杨镇熙, 陈海云, 方成豪, 樊新祥. 甘肃北山华窑山一带1/5万水系沉积物地球化学特征及金、钨找矿远景[J]. 黄金科学技术, 2023, 31(4): 546-559.
[7] 崔文玮,晁会霞,何虎军,杨兴科,杨俊杰,朱昊磊,吴旭. 海南富文金矿床矿石、围岩及地层元素地球化学特征及地质意义[J]. 黄金科学技术, 2023, 31(3): 423-432.
[8] 张勇,张爱奎,何书跃,刘智刚,刘永乐,张鹏,孙非非. 东昆仑祁漫塔格地区库德尔特金矿区花岗闪长岩的时代、成因及其构造意义[J]. 黄金科学技术, 2023, 31(1): 1-14.
[9] 曹振梁,刘学龙,李守奎,刘思晗,李方兰,周博文. 滇西北燕山期含矿花岗岩与全球埃达克岩地球化学特征对比[J]. 黄金科学技术, 2023, 31(1): 15-25.
[10] 陈海云,龚振中,杨镇熙,任长旭,周兆明. 甘肃北山音凹峡地区水系沉积物测量地球化学特征及找矿靶区优选[J]. 黄金科学技术, 2023, 31(1): 37-49.
[11] 王建国,张世珍,邢佳,王志男,魏生云,胡建. 乌兰茶卡北山含矿伟晶岩地球化学特征及地质意义[J]. 黄金科学技术, 2022, 30(6): 809-821.
[12] 符安宗,余欣朗,李成禄,杨文鹏,杨元江,郑博,赵瑞君. 元素比值在嫩江—黑河地区金成矿预测的应用初探[J]. 黄金科学技术, 2022, 30(6): 822-834.
[13] 张玉鹏,史冬岩,吕明奇,李成禄,张坤,唐伟. 岩屑地球化学测量在黑龙江省三道湾子浅覆盖区的找矿应用效果[J]. 黄金科学技术, 2022, 30(5): 651-663.
[14] 邢佳,王建国,王志男,胡建,魏生云. 青海赛坝沟金矿辉长岩地球化学组成及成因分析[J]. 黄金科学技术, 2022, 30(5): 664-675.
[15] 胡宝群,高海东,王运,张宝林,吕古贤,申玉科,郭涛. 玲珑金矿田含矿断裂的基岩地球化学特征及找矿潜力评价[J]. 黄金科学技术, 2022, 30(4): 518-531.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!