img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2016, Vol. 24 ›› Issue (4): 66-72.doi: 10.11872/j.issn.1005-2518.2016.04.066

• 采选技术与矿山管理 • 上一篇    下一篇

三山岛海底金矿开采充填体与顶板岩层的变形监测研究

马凤山1,郭捷1,李克蓬1,卢蓉1,张洪训2,李威2   

  1. 1.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京   100029;
    2.山东黄金矿业(莱州)有限公司三山岛金矿,山东  莱州   261442
  • 收稿日期:2016-06-10 修回日期:2016-07-20 出版日期:2016-08-28 发布日期:2016-11-17
  • 作者简介:马凤山(1964-),男,河北吴桥人,研究员,从事地质工程与地质灾害方面的研究工作。fsma@mail.iggcas.ac.cn
  • 基金资助:

    国家自然科学基金面上项目“陡倾矿体充填开采岩移规律与充填体稳定性研究”(编号:41372323)资助

Monitoring and Research for the Deformation of Mine Backfill and Roof Surrounding Rock when Exploiting Sanshandao Seabed Gold Mine

MA Fengshan1,GUO Jie1,LI Kepeng1,LU Rong1,ZHANG Hongxun2,LI Wei2   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing    100029,China;
    2.Sanshandao Gold Mine,Shandong Gold Mining (Laizhou)Co., Ltd.,Laizhou    261442,Shandong,China
  • Received:2016-06-10 Revised:2016-07-20 Online:2016-08-28 Published:2016-11-17

摘要:

三山岛金矿新立矿区是我国第一个从事海底基岩矿床开采的金属矿山,主要可采矿体均赋存于海底下部20~670 m的岩体中,矿体与海水间仅靠2~3 m厚的海底黏土隔水层隔离。为保障矿山安全生产,根据新立矿区具体的采矿地质条件,选择-200 m中段63线13#、71线17#和111线37#穿脉巷道,埋设了6个测点的埋入式智能记忆型位移计。每个穿脉巷道的测点均按2种方式布设:一种是上向倾斜钻孔穿过下盘围岩、充填体与下盘围岩的接触带和充填体,用以监测充填体与下盘岩体的相对变形;第二种是上向倾斜钻孔穿越F1主裂面下盘岩体和上盘岩体,用以监测断层上下盘岩体的相对变形。通过2013年9月至2014年12月的现场监测,获得了监测期间开采活动引起的充填体及顶板岩层的移动变形特征。监测结果表明,海底充填体和上盘围岩的变形量较小,表明三山岛金矿新立海底采场充填体和上盘围岩在监测期间保持了很好的稳定性。

关键词: 海底开采, 充填体, 顶板岩层, 变形监测, 三山岛金矿

Abstract:

Xinli deposit of Sanshandao gold mine is the first exploited hard rock mine under seawater in China,which mainly occurred in seabed rock between 20 and 670 m in depth and covered by only 2 to 3 meters thick clay aquiclude under seawater.To ensure mining safety and according to mining geological conditions,six intelligently memory displacement meters had been buried in 13#,17# and 37# transverse drifts along exploration lines of 63,71 and 111,respectively.Two buried ways were designed for the six meters.One was an updip drill threading through footwall rock into fill mass and for monitoring the relative deformation between backfill and footwall rock.Another one was an updip drill penetrating footwall rock and F1 main fracture surface into hanging wall rock and for recording the relative deformation between footwall and hanging wall rocks.And the deformation and movement characteristics of backfill and hanging wall rock have been obtained from September 2013 to December 2014.The results showed that the body of fill mass and hanging wall rock under seawater were subject to a comparatively small deformation and remained good stable during the monitoring process.

Key words: undersea mining, backfill, roof surrounding rock, deformation monitoring, Sanshandao gold mine

中图分类号: 

  • TU457

[1] Kratzsch H.Mining Subsidence Engineering[M].New York:pringer-erlag,Berlin Heidelberg ,1983.
[2] Barry N,Whittaker I,David J,et al.Subsidence Occurrence,Prediction and Control[M].Netherlands:Elsevier Science Publisher,1989.
[3] Madan M S.Mine Subsidence of Mining Engineer[M].Englewood:Society for Mining Metallurgy,1986.
[4] Helmut K.Mining subsidence engineering [M].New York:Transl ated by Fleming,Spring-verlag Berlin Heidelberg,1983.
[5] Lin S,Whittaker B N,Reddish D J.Application of asymmetrical influence functions for subsidence prediction of gently inclined seam extractions[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(5):479-490.
[6] Cui X M,Miao X X,Wang J A,et al.Improved prediction of differential subsidence caused by underground mining[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(4):615-627.
[7] Sheore P R, Loui J P,Singh K B,et al.Ground subsidence observations and a modified influence function method for complete subsidence prediction[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(5):801-818.
[8] Bell F G,Stacey T R,Genske D D.Mining subsidence and its effect on the environment:Some differing examples[J].Environmental Geology,2000,40(1/2):135-152.
[9] Swift G M,Reddish D J.Stability problems associated with an abandoned ironstone mine[J].Bulletin of Engineering Geology and the Environment,2002,61(3):227-239.
[10] 刘宝琛,廖国华.煤矿地表移动的基本规律[M].北京:中国工业出版社,1965.
[11] 煤炭科学研究总院北京开采所.煤矿地表移动与覆岩破坏规律及其应用[M].北京:煤炭工业出版社,1986.
[12] 何国清,杨伦,凌赓娣,等.矿山开采沉陷学[M].北京:中国矿业大学出版社,1991.
[13] 谢和平,陈至达.非线性大变形有限元分析及在预测岩层移动中的应用[J].中国矿业大学学报,1988(2):94-98.
[14] 寇新建,曾卓乔,尹德潜.自然崩落法下岩移规律研究[J].江西有色金属,1991,7(2):49-53.
[15] 汤建泉,孙晓明.覆岩组合运动规律的研究[J].山东科技大学学报(自然科学版),1995,14(4):365-370.
[16] 钱鸣高,缪协兴,许家林.岩层控制中关键层理论研究[J].煤炭学报,1996,21(3):225-230.
[17] 隋旺华.开采覆岩破坏工程地质预测的理论与实践[J].工程地质学报,1994,2(2):29-37.

[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[3] 海龙, 鲍荣涛, 谭世林, 房祥龙. 分层尾砂胶结充填体力学特性及优化试验研究[J]. 黄金科学技术, 2023, 31(5): 763-772.
[4] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[5] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[6] 苏华友,王永定,谭宝会,龙卫国,杨宁,张志贵,陈星明. 大面积胶结充填体诱导冒落机理及其发展过程研究[J]. 黄金科学技术, 2022, 30(5): 713-723.
[7] 赵奎,刘周超,曾鹏,龚囱. 单轴压缩下不同尺寸充填体能量损伤演化特征试验研究[J]. 黄金科学技术, 2022, 30(4): 540-549.
[8] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[9] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[10] 张钦礼, 余一波, 王道林. 龙首矿充填体悬臂结构的稳定性分析与评价[J]. 黄金科学技术, 2022, 30(2): 254-262.
[11] 范永亮, 崔继强, 张元坤, 李凤, 黄春云, 顾元统, 何建元. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术, 2022, 30(2): 263-271.
[12] 靳少博,刘科伟,黄进,靳绍虎. 单轴压缩下充填体损伤本构模型研究[J]. 黄金科学技术, 2021, 29(4): 555-563.
[13] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564-572.
[14] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[15] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!