img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2017, Vol. 25 ›› Issue (3): 70-76.doi: 10.11872/j.issn.1005-2518.2017.03.070

• 采选技术与矿山管理 • 上一篇    下一篇

基于核主成分分析与PSO-SVM的充填管道失效风险性分级评价模型

张钦礼,王兢*,王新民   

  1. 中南大学资源与安全工程学院,湖南  长沙   410083 
  • 收稿日期:2016-06-02 修回日期:2016-09-28 出版日期:2017-06-30 发布日期:2017-09-11
  • 通讯作者: 王兢(1992-),男,云南安宁人,硕士研究生,从事采矿与充填技术研究工作。2530664574@qq.com
  • 作者简介:张钦礼(1964-),男,山东临朐人,教授,从事采矿与充填技术研究工作。zhangqinlicn@126.com
  • 基金资助:

    国家“十二五”科技支撑计划课题“多空区厚大矿体安全高效开采及工程化技术研究”(编号:2015BAB14B01)资助

Failure Risk Assessment Model of Filling Pipeline Based on KPCA and PSO-SVM

ZHANG Qinli,WANG Jing,WANG Xinmin   

  1. School of Resources and Safety Engineering,Central South University,Changsha     410083,Hunan,China
  • Received:2016-06-02 Revised:2016-09-28 Online:2017-06-30 Published:2017-09-11

摘要:

为了更精确地对充填管道失效风险性进行预测,建立核主成分分析与PSO-SVM相结合的评价模型。选取8项定量指标作为充填管道失效风险性的评价指标。统计15个矿山的样本数据,运用核主成分分析法对15个样本进行预处理,得出主成分,再利用改进的SVM模型进行预测,进而得到更加精确的管道失效风险性预测结果。研究结果表明,所得到的实际预测结果与期望值之间的平均相对误差控制在5%以内。利用核主成分分析法与PSO-SVM相结合的评价模型具有精度高和运算速度快的优点,为充填管道失效风险预测提供了一种可靠的方法。

关键词: 失效风险性等级, 充填管道, 核主成分分析, 支持向量机, 组合预测模型

Abstract:

In order to predict the invalidation risk of backfilling pipeline more accurately,the evaluation model based on kernel principal component analysis and PSO-SVM is established.Eight quantitative indexes are selected as the evaluation index of failure risk of filling pipeline.And the sample data of fifteen mines were counted,which were processed by kernel principal component analysis,producing the main ingredients,as the input data of the optimized SVM model which ended up with a more accurate risk prediction on invalidation of backfilling pipeline.The results indicate that the average expected value relative errors of the five mines are below 5%.The invalidation risk assessment of backfill pipeline by the establishment of the kernel principal components analytic method and the optimized SVM model has the advantage of rapid analysis and high precision of prediction.A better evaluation is provided for the mine backfilling pipeline invalidation risk analysis.

Key words: failure risk level, filling pipe, kernel principal component analsis, support vector machine, combination predicting model

中图分类号: 

  • TD325

[1]  Wang Xianggui,Tang Kaiyuan.Overview of cut and file method for mines[J].Express Information of Mining Indurstry,2008, 24(12):1-5.[王湘桂,唐开元.矿山充填采矿法综述[J].矿业快报,2008,24(12):1-5.]
[2] Qiao Dengpan,Cheng Weihua,Zhang Lei,et al.Modern mining concepts and filling technique[J].Nonferrous Metals Science and Engineering,2011,2(2):7-14.[乔登攀,程伟华,张磊,等.现代采矿理念与充填采矿[J].有色金属科学与工程,2011,2(2):7-14.]
[3] Zhang Haibo,Song Weidong,Xu Yingxia.Study on the current problem and applied development of backfill mining[J].Gold,2010,31(1):23-25.[张海波,宋卫东,许英霞.充填采矿技术应用发展及存在问题研究[J].黄金,2010,31(1):23-25.]
[4] Zhang Haibo,Song Weidong.Discussion on the current state of backfill mining from the domestic and foreign development[J].China Mining Magazine,2009,18(12):59-62.[张海波,宋卫东.评述国内外充填采矿技术发展现状[J].中国矿业,2009,18(12):59-62.]
[5] Guo Jiang,Zhang Bixiao.Invalidation risk evaluation of back- fill pipe based on PCA and BP neural network[J].Gold Science and Technology,2015,23(5):66-71.[过江,张碧肖.基于PCA与BP神经网络的充填管道失效风险评估[J].黄金科学技术,2015,23(5):66-71.]
[6] Zhang Deming.A Study on Wear Mechanism and the Reliability Evaluation System for Backfilling Pipelines in Deep Mine[D].Changsha:Central South University,2012.[张德明.深井充填管道磨损机理及可靠性评价体系研究[D].长沙:中南大学,2012.]
[7] Zhang Qinli,Zheng Jingjing,Wang Xinmin,et al.A study of the abrasion form and mechanism of backfilling pipelines[J].Metal Mine,2009(5):115-118.[张钦礼,郑晶晶,王新民,等.充填管道磨损形式及机理分析研究[J].金属矿山,2009(5):115-118.]
[8] Wang Xinmin,Wang Shi,Yan Debo,et al.Risk assessment on blocking of filling pipeline based on uncertainty measure- ment theory[J].China Safety Science Journal,2012,22(4):151-156.[王新民,王石,鄢德波,等.基于未确知测度理论的充填管道堵塞风险性评价[J].中国安全科学学报,2012,22(4):151-156.]
[9] Zhang Qinli,Zhou Bihui,Wang Xinmin,et al.Invalidation prediction precision of filling pipeline[J].Journal of Central South University (Science and Technology),2014,45(8):2805-2811.[张钦礼,周碧辉,王新民,等.充填管道失效风险性预测精度研究[J].中南大学学报(自然科学版),2014,45(8):2805-2811.]
[10] Wei Zhenzhong.Feature extraction based on kernel principal component analysis[J].Journal of Guangxi University of Technology,2006,17(4):27-31.[韦振中.基于核主成分分析的特征提取方法[J].广西工学院学报,2006,17(4):27-31.]
[11] Li Xibing,Zhu Wei,Liu Weijun,et al.Research on rock mass blastability based on principal component analysis and RBF neural network[J].Gold Science and Technology,2015,23(6):58-63.[李夕兵,朱玮,刘伟军,等.基于主成分分析法与RBF神经网络的岩体可爆性研究[J].黄金科学技术,2015,23(6):58-63.]
[12] Chen Jianhong,Zhu Dingyao,Chen Yijun,et al.Analysis of the stability for mine tailings dam based on PCA-BP neural network[J].Gold Science and Technology,2015,23(5):47-52.[陈建宏,朱鼎耀,陈轶俊,等.基于PCA-BP神经网络的尾矿库坝体稳定性分析[J].黄金科学技术,2015,23(5):47-52.]
[13] Shi Xiuzhi,Fan Yuqian,Shang Xueyi.Strength prediction of filling body based on PCA and BP neural networks[J].Gold Science and Technology,2016,24(3):64-69.[史秀志,范玉乾,尚雪义.基于PCA-BP神经网络模型的充填体强度预测[J].黄金科学技术,2016,24(3):64-69.]
[14] Ding Shifei,Qi Bingjuan,Tan Hongyan.An overview on theory and algorithm of support vector machines[J].Journal of University of Electronic Science and Technology of China,2011,40(1):2-10.[丁世飞,齐丙娟,谭红艳.支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1):2-10.]
[15] Zhang Xuegong.Introduction to statistical learning theory and support vector machines[J].Acta Autom Atica Sinica,2000,26(1):36-46.[张学工.关于统计学习理论与支持向量机[J].自动化学报,2000,26(1):36-46.]
[16] Tu Juanjuan.Research on Learning Algorithm of Neural Network Optimized with PSO and Its Application[D].Zhenjiang:Jiangsu University,2013.[涂娟娟.PSO优化神经网络算法的研究及其应用[D].镇江:江苏大学,2013.]
[17] Zhang Qinli,Chen Qiusong,Wang Xinmin,et al.Study on GA-SVM optimal prediction model on flocculating sedimentation parameter of unclassified tailings[J].Journal of Safety Science and Technology,2014,37(5):24-30.[张钦礼,陈秋松,王新民,等.全尾砂絮凝沉降参数GA-SVM优化预测模型研究[J].中国安全生产科学技术,2014,37(5):24-30.]
[18] Zhu Wei,Shi Chaofeng,Li Nan.The prediction model of compressive strength of recycled concrete support vector machine based on genetic algorithm[J].Journal of China & Foreign Highway,2014,34(1):311-314.[朱伟,石超峰,李楠.基于遗传算法优化支持向量机的再生混凝土抗压强度预测模型[J].中外公路,2014,34(1):311-314.]
[19] Xie Hongsheng,Sun Longmei,Wang Lianguo.Method for developing content-based image retrieval systems based on SVM and Matlab[J].Journal of Yunnan University of Nationalities(Natural Sciences Edition),2010,19(3):207-210.[解洪胜,孙龙梅,王连国.利用SVM和Matlab开发图像内容检索系统的方法[J].云南民族大学学报(自然科学版),2010,19(3):207-210.]
[20] Cheng Ling,Xu Dongdong.Application of Matlab simulation in communication principle teaching[J].Research and Exp- loration in Laboratory,2010,29(2):117-119.[程铃,徐冬冬.Matlab仿真在通信原理教学中的应用[J].实验室研究与探索,2010,29(2):117-119.]

[1] 方博扬,赵国彦,马举,陈立强,简筝. Adaboost集成学习优化的巷道围岩松动圈预测研究[J]. 黄金科学技术, 2023, 31(3): 497-506.
[2] 骆正山,黄仁惠,申国臣. 基于KPCA-IPSO-LSSVM的充填管道磨损风险预测[J]. 黄金科学技术, 2021, 29(2): 245-255.
[3] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
[4] 谭吉玉,刘高常. 基于小波支持向量机模型的矿区生态安全评价方法研究[J]. 黄金科学技术, 2020, 28(6): 902-909.
[5] 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584.
[6] 韩超群,陈建宏,周智勇,杨珊. 基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究[J]. 黄金科学技术, 2019, 27(6): 879-887.
[7] 王石,汤艺,冯萧. 基于改进PCA与有序多分类Logistic的充填管道磨损风险评估[J]. 黄金科学技术, 2019, 27(5): 740-746.
[8] 过江,张碧肖. 基于PCA与BP神经网络的充填管道失效风险评估[J]. 黄金科学技术, 2015, 23(5): 66-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!