img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2017, Vol. 25 ›› Issue (3): 98-107.doi: 10.11872/j.issn.1005-2518.2017.03.098

• 采选技术与矿山管理 • 上一篇    下一篇

基于组合预测与变精度粗糙模糊集的采空区稳定性评价

邓高1,杨珊 1,2*   

  1. 1.中南大学资源与安全工程学院,湖南  长沙   410083;
    2.中南大学安全科学与工程博士后流动站,湖南  长沙   410083
  • 收稿日期:2016-01-20 修回日期:2016-05-23 出版日期:2017-06-30 发布日期:2017-09-11
  • 通讯作者: 杨珊(1983-),男,湖北监利人,讲师,从事矿业经济与采矿系统工程研究工作。1652102421@qq.com
  • 作者简介:邓高 (1975-),男,湖南长沙人,博士研究生,从事资源与环境经济学以及企业管理研究工作。denggao@chinavalin.com
  • 基金资助:

    国家自然科学基金青年基金项目“基于人工智能的矿山技术经济指标动态优化”(编号:51404305)和中国博士后科学基金项目“辰州矿业采掘计划可视化编制与优化研究”(编号:2015M572269)联合资助

Stability Evaluation of Goafs Based on Combined Forecasting and Variable Precision Rough Fuzzy Set

DENG Gao1,YANG Shan 1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha   410083,Hunan,China;
    2.Safety Science and Engineering Postdoctoral Research Station,Central South University,Changsha     410083,Hunan,China
  • Received:2016-01-20 Revised:2016-05-23 Online:2017-06-30 Published:2017-09-11

摘要:

为了准确评价矿山采空区稳定性,分析其影响因素,结合采空区顶板下沉位移前期检测数据,先利用组合预测理论对顶板下沉位移的多种模型预测结果进行了组合,然后根据组合预测值对采空区稳定性进行评判。以采空区稳定性评价作为决策属性,以其影响因素作为条件属性,利用变精度粗糙模糊集对采空区稳定性评价知识系统进行概率决策分析,得到13条β为70%的β-约简概率决策规则。结果表明:对于该矿山而言,采空区面积、地应力大小和临时支护方式是评判采空区稳定性的决定性影响因素,所得概率决策规则的分类质量为62.96%,分类质量较高,可为采空区稳定性判定及规律分析提供参考。

关键词: 采空区, 稳定性评价, 组合预测, BP神经网络, 隶属函数, 数学理论模型, 粗糙集, 模糊综合评制法

Abstract:

In order to accurately evaluate stability of mine goafs and analyze its main influential factors,according to the preliminary test data of goafs roof subsidence displacement,combination forecasting was applied to compose final predictive values of roof subsidence displacement by vary models,and then goafs stability was judged by resultant predictive values.Goafs stability was set as decision attribute,and its influential factors were set as condition attributes,variable precision rough fuzzy set was applied to probabilistically decision analyze assessment knowledge system of goafs stability,and 13 β- decision rules which β was 70% were got. It shows that goaf area,crustal stress size and temporary support way are decisive factors to goafs stability,and the classification quality of probabilistic decision rules is 62.96%,it is high,which can be references for stability judge and its law analysis.

Key words: goaf, stability evaluation, combined forecasting, BP neural network, membership function, mathematical model, rough set, fuzzy comprehensive evaluation method

中图分类号: 

  • TD325 
[1] Feng Yan,Wang Xinmin,Cheng Aibao,et al.Method opti- mization of underground goaf risk evaluation[J].Journal of Central South University(Science and Technology),2013,44(7):2881-2888.[冯岩,王新民,程爱宝,等.采空区危险性评价方法优化[J].中南大学学报(自然科学版),2013,44(7):2881-2888.]
[2] Zhang W X.Incomplete information system and its optimal selection[J].Computer and Mathematics with Application,2010,48(5):691-698.
[3] Wu Shunxiang.Gray Rough Set Model and Application[M].Beijing:Science Press,2009.[吴顺祥.灰色粗糙集模型及其应用[M].北京:科学出版社,2009.]
[4] Yang X B,Xie J,Song X N,et al.Credible rules in incomplete decision system based on descriptor[J].Knowledge Based Systems,2009,22(1):8-17.
[5] Chen Jianhong,Zheng Haili,Liu Zhenxiao,et al.Rough sets of lane way supporting schemes evaluation system based on dominance relation[J].Journal of Central South University(Science and Technology),2011,42(6):1698-1703.[陈建宏,郑海力,刘振肖,等.基于优势关系的粗糙集的巷道支护方案评价体系[J].中南大学学报(自然科学版),2011,42(6):1698-1703.]
[6] Ma Yunlong.Research on Goaf Stability Analysis and the Impact Factors[D].Chashang:Central South University,2010.[马云龙.采空区稳定性分析及影响因子研究[D].长沙:中南大学,2010.]
[7] Huang Wenxiong.Study on the Performance Evaluation in Expressway Asphalt Pavement Based on the Mixed GANN Model[D].Wuhan:Wuhan University of Technology,2003.[黄文雄.基于混合遗传神经网络的高速公路沥青路面使用性能评价方法研究[D].武汉:武汉理工大学,2003.]
[8] Zeng Sheng.Pavement performance evaluating model by using RBF[J].Journal of Highway and Transportation Research and Development,2008,25(3):23-26.[曾胜.径向基函数网络在沥青路面使用性能评价中的应用[J].公路交通科技,2008,25(3):23-26.]
[9] He Tiejun,Huang Wei.Application of fuzzy neutral net work in bitumen pavement performance assessment[J].Journal of High- way and Transportation Research and Development,2000,17(4):11-14.[何铁军,黄卫.模糊神经网络在沥青路面使用性能评价中的应用[J].公路交通科技,2000,17(4):11-14.]
[10] Zhang Yunlong,Liu Mao.Application of grey prediction model GM(1,1) in fire accident[J].Acta Scientiarum Naturalium Universitatis Nankaiensis,2009,42(1):11-15.[张云龙,刘茂.灰色GM(1,1)模型在火灾事故预测中的应用[J].南开大学学报(自然科学版),2009,42(1):11-15.]
[11] Guo Liping,Sun Wei,Zheng Keren,et al.Non-equal interval GM(1,1) direct model and its application in processing of materials experimental data[J].Journal of Southeast University(Natural Science Edition),2004,34(6):39-41.[郭丽萍,孙伟,郑克仁,等.非等时距GM(1,1)直接模型及其在材料试验数据处理中的应用[J].东南大学学报(自然科学版),2004,34(6):39-41.]
[12] Zhang Xing,Wu Juxin,Chen Hui,et al.Fujian food production combination forecasting model based on entropy weigh[J].Chinese Journal of Agrometeorology,2008,29(2):194-196.[张星,吴菊薪,陈惠,等.基于熵权的福建粮食产量组合预测模型[J].中国农业气象,2008,29(2):194-196.]
[13] Wang Changheng,Bai Lixiang,Deng Shan.Analysis of asphalt pavement performance based on entropy weight combination rorecast and rough fuzzy set[J].Journal of Highway and Transportation Research and Development,2016,33(4):12-19.[王昌衡,柏理想,邓 珊.基于熵权组合预测与粗糙模糊集的沥青路面使用性能分析[J].公路交通科技,2016,33(4):12-19.]
[14] Hao Shaofeng,Fang Yuanmin,Yang Jianwen,et al.Applica- tion of combination model of entropy method to landslide deformation prediction[J].Engineering of Surveying and Ma- pping,2014,23(7):62-64.[郝少峰,方源敏,杨建文,等.基于熵权法的组合模型在滑坡变形预测中的应用[J].测绘工程,2014,23(7):62-64.]
[15] Qin Zhibin,Qian Guoping,Ma Wenbin.Multi-objective comprehensive evaluation for performance of asphalt concrete pavement based on fuzzy entropy[J].Journal of Central South University(Science and Technology),2013,44(8):3474- 3478.[秦志斌,钱国平,马文彬.基于熵权的沥青路面使用性能多目标综合评价[J].中南大学学报(自然科学版),2013,44(8):3474-3478.]
[16] Xie Zhengwen,Hu Hanhua.A grey combination prediction model for settlement based on entropy weight and its app- lication[J].Mining Research and Development,2007,27(4):12-13[谢正文,胡汉华.基于熵权的灰色沉降组合预测模型及应用[J].矿业研究与开发,2007,27(4):12-13.]
[17] Luo Kai,Wu Chao,Yang Fuqiang.Management response system to ores spontaneous combustion based on dominance- based rough sets and grey target[J].Journal of Central South University(Science and Technology),2014,45(1):224- 230.[罗凯,吴超,阳富强.基于优势关系粗糙集与灰靶决策的矿石自燃管理应对体系[J].中南大学学报(自然科学版),2014,45(1):224-230.]
[18] Zhou Xianzhong,Huang Bing,Li Huaxiong,et al.Rough Set Theory and Method of Incomplete Information Systems Knowledge Acquisition[M].Nanjing:Nanjing University Press,2010.[周献中,黄兵,李华雄,等.不完备信息系统知识获取的粗糙集理论与方法[M].南京:南京大学出版社,2010.]
[19] Cheng Wenming,Peng Ling,Niu Ruiqing.Landslide susce- ptibility assessment based on rough set theory:Taking Zigui County territory in three gorges reservoir for example[J].Journal of Central South University(Science and Tech- nology),2013,44(3):1083-1090.[程温鸣,彭令,牛瑞卿.基于粗糙集理论的滑坡易发性评价——以三峡库区秭归县境内为例[J].中南大学学报(自然科学版),2013,44(3):1083-1090.]
[20] Jian Lirong.Uncertainty Decision-making Oriented Heterozy- gous Rough Set Method and Its Application[M].Beijing: Science Press,2008.[菅利荣.面向不确定性决策的杂合粗糙集方法及其应用[M].北京:科学出版社,2008.]
[21] Zhang Shu,Shi Xiuzhi,Gu Desheng,et al.Analysis and evaluation of safety management capability in mine based on ISM and AHP and fuzzy evaluation method[J].Journal of Central South University(Science and Technology),2011,42(8):2406-2415.[张舒,史秀志,古德生,等.基于 ISM 和 AHP 以及模糊评判的矿山安全管理能力分析与评价[J].中南大学学报(自然科学版),2011,42(8):2406-2415.]
[22] Chen Xiuyou.Reasons Analysis and Control Methods on Roadway Damage of Renlou Coal Mine[D].Xuzhou:China University of Mining and Technology,2008.[陈秀友.任楼煤矿巷道破坏原因分析与治理对策[D].徐州:中国矿业大学,2008.]
 
[1] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[2] 张帅, 赵鑫, 彭祥玉, 王宇斌, 桂婉婷, 田家怡. 基于双隐含层BP神经网络的某金矿回收率预测研究[J]. 黄金科学技术, 2024, 32(1): 170-178.
[3] 周昌微, 谢贤平, 都喜东. 基于曲线拟合和神经网络的独头巷道CO浓度预测研究[J]. 黄金科学技术, 2024, 32(1): 75-81.
[4] 方博扬,赵国彦,马举,陈立强,简筝. Adaboost集成学习优化的巷道围岩松动圈预测研究[J]. 黄金科学技术, 2023, 31(3): 497-506.
[5] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[6] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[7] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[8] 谢饶青, 陈建宏, 肖文丰. 基于NPCA-GA-BP神经网络的采场稳定性预测方法[J]. 黄金科学技术, 2022, 30(2): 272-281.
[9] 高峰,吴晓东,周科平. 基于主成分分析和PSO-ELM算法的排土场稳定性预测模型[J]. 黄金科学技术, 2021, 29(5): 658-668.
[10] 叶光祥,黄智群,王晓军,张树标,苑栋. 基于未确知测度理论的石英脉型钨矿山采空区稳定性评价[J]. 黄金科学技术, 2021, 29(3): 433-439.
[11] 廖宝泉,柯愈贤,卿琛,张华熙,黄豪琪,方立发,王成,陶铁军. 基于相对差异函数的金属矿采空区危险性识别[J]. 黄金科学技术, 2021, 29(3): 440-448.
[12] 骆正山,黄仁惠,申国臣. 基于KPCA-IPSO-LSSVM的充填管道磨损风险预测[J]. 黄金科学技术, 2021, 29(2): 245-255.
[13] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[14] 许瑞, 侯奎奎, 王玺, 刘兴全, 李夕兵. 基于核主成分分析与SVM的岩爆烈度组合预测模型[J]. 黄金科学技术, 2020, 28(4): 575-584.
[15] 党明智,张君,贾明涛. 黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J]. 黄金科学技术, 2020, 28(2): 246-254.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!