img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2017, Vol. 25 ›› Issue (6): 52-60.doi: 10.11872/j.issn.1005-2518.2017.06.052

• 采选技术与矿山管理 • 上一篇    下一篇

基于金属价格不确定性的地下矿生产计划风险分析

任助理1,2,王李管1,2*   

  1. 1.中南大学资源与安全工程学院,湖南  长沙   410083;
    2.中南大学数字矿山研究中心,湖南  长沙   410083
  • 收稿日期:2016-11-12 修回日期:2017-03-19 出版日期:2017-12-30 发布日期:2018-05-18
  • 通讯作者: 王李管(1964-),男,山西乡宁人,教授,从事数字矿山研究工作。liguan_wang@163.com
  • 作者简介:任助理(1990-),男,河南沈丘人,硕士研究生,从事数字矿山研究工作。renzhuli@yeah.net
  • 基金资助:

    中央高校基本科研业务费专项资金“自然崩落法放矿计划优化方法与可视化编制技术研究”(编号:2016zzts450)和中南大学“创新驱动”项目资助“智能化清洁化现代矿业工程理论与技术”(编号:2015CX005)联合资助

Risk Analysis of Underground Mine Production Scheduling Based on Metal Price Uncertainty

REN Zhuli 1,2,WANG Liguan 1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha    410083,Hunan,China;
    2.Center of Digital Mine Research,Central South University,Changsha    410083,Hunan,China
  • Received:2016-11-12 Revised:2017-03-19 Online:2017-12-30 Published:2018-05-18

摘要:

针对采用无底柱分段崩落法生产的地下金属矿山的生产计划编制问题,通过构建以净现值(NPV)最大为目标函数并满足生产能力及空间顺序等约束条件的混合整数规划模型,用于确定各个采场之间开采的先后顺序,其中金属价格的变化不仅影响计划编制结果而且使计划的风险显著增大。根据金属历史价格分布,运用几何布朗运动(GBM)模型预测15条金属价格走势曲线,通过求解生产计划的混合整数规划模型,得到不同价格走势下的生产计划结果,然后根据GBM模型预测更多金属价格走势曲线并分析不同计划结果下的净现值、上涨潜力、风险下限、条件风险价值(CVaR)和风险价值(VaR),最终运用熵值法确定金属价格不确定条件下收益高且风险小的生产计划。经实例验证,此方法科学可行,减少了传统手工方法编制生产计划时受到的价格风险的影响,实现资源低风险高效开采,对指导矿山的实际生产具有重要的意义。

关键词: 无底柱分段崩落法, 生产计划, 混合整数规划, 优化, 金属价格, 几何布朗运动, 风险分析

Abstract:

For the underground metal mine production planning optimization in sublevel caving method,the mixed integer programming model was built with the function of maximizing the net present value (NPV) constraint condition of the production capacity and space order to determine the stope mining sequence.The metal price changes not only affect the planning result,but  also it is difficult to determine the risk of plan and can bring great economic losses in mining enterprises.According to the distribution of metal history price,using the geometric Brownian motion(GBM) model to predict 15 metal price trend curve,the production plan for different price trend curve was gutted by solving the mixed integer programming model,finally the more metal prices curve was predicted by using the GBM model again and analysis the net present value.Upside potential,downside risk,conditional value at risk (CVaR) and the value at risk (VaR) of different planning also was analyzed.Finally by using entropy method to determine the price of metal high yield under uncertainty and risk of small production plan.Verification by the concrete example that the method is scientific and feasible,can reduce the risk of the price when use traditional manual method to prepare production plan,realize low risk high efficiency mining resources,and has an important significance for actual production of the mine.

Key words: sublevel caving method, production scheduling, mixed integer programming, optimization, metal price, GBM, risk analysis

中图分类号: 

  • F407.1

[1] Li Yinglong,Tong Guangxu.Survey of the development of mine production plan scheduling [J].Metal Mine,1994(12):11-16.[李英龙,童光煦.矿山生产计划编制方法的发展概况[J].金属矿山,1994(12):11-16.]
[2] Wang Liguan,Ren Zhuli,Pan Chuanpeng,et al.Optimization analysis of stope mining sequence based on mixed integer programming[J].The Chinese Journal of Nonferrous Metals,2016,26(1):173-179.[王李管,任助理,潘传鹏,等.基于混合整数规划法的采场回采顺序优化分析[J].中国有色金属学报,2016,26(1):173-179.]
[3] Newman A M,Rubio E,Caro R,et al.A review of operations research in mine planning[J].Interfaces,2010,40(3):222-245.
[4] Hu Liuqing,Wang Liguan,Bi Lin.3D Visualization system based production plan scheduling of underground mine[J]. Journal of China Coal Society,2007,32(9):930-933.[胡柳青,王李管,毕林.地下矿山生产计划3D可视化编制技术[J].煤炭学报,2007,32(9):930-933.]
[5] Rehman S U,Asad M W A.A mixed-integer linear programming model for short-range production scheduling of cement quarry operations[J].Asia-Pacific Journal of Operational Research,2010,27(3):315-333.
[6] Pourrahimian Y,Askari-Nasab H,Tannant  D D.A multistep approach for block-cave production scheduling optimization [J].International Journal of Mining Science and Technology,2013,23(5):739-750.
[7] Carlyle W M,Eaves B C.Underground planning at stillwater mining company[J].Interfaces,2001,31(4):50-60.
[8] O’Sullivan D,Newman A.Optimization-based heuristics for underground mine scheduling[J].European Journal of Operational Research,2015,241(1):248-259.
[9] O’Sullivan D,Newman A.Extraction and backfill scheduling in a complex underground mine[J].Interfaces,2014,44(2):204-221.
[10] Martinez M A,Newman A M.A solution approach for optimizing long- and short-term production scheduling at LKAB’s Kiruna mine[J].European Journal of Operational Research,2011,211(1):184-197.
[11] Prieto F J.On modelling planning under uncertainty in manufacturing-discussion[J].Sort,2007,31(2):157-160.
[12] Escudero L F.An algorithmic framework for solving large scale multistage stochastic mixed 0-1problems with nonsymmetric scenario trees[J].Computers & Operations Research,2012,39(5):1133-1144.
[13] Kempf  K G,Keskinocak P, Uzsoy  R.Planning Production and Inventories in the Extended Enterprise[M].Berlin:Springer,2011.
[14] Gao Lu.Stock index geometric Brownian motion simulation and empirical analysis[J].Modern Economic Information,2010(6):18.[高璐.股票指数几何布朗运动模拟及实证分析[J].现代经济信息,2010(6):18.]
[15] Feng Xiaolong.Application and prediction of geometric Brownian motion on Matlab[J].Journal of Computer Applications,2013,33(S1):329-330,334.[冯晓龙.基于Matlab的几何运动布朗模型的应用与预测[J].计算机应用,2013,33(增1):329-330,334.]
[16]  Alonso-Ayuso A,Carvallo F,Escudero  L F,et al.Medium range optimization of copper extraction planning under uncertainty in future copper prices[J].European Journal of Operational Research,2014,233(3):711-726.
[17] Zhang Mingjia.Research on the Application of Mixed Integer Programming in Engineering[D].Wuhan: Huazhong University of  Science and Technology,2005.[张明佳.混合整数规划方法的工程应用研究[D].武汉:华中科技大学,2005.]
[18] Wan Xiaoheng,Wang Xinmin,Zhu Yangya,et al.Optimization of the stope structural parameters based on empowerment combination TOPSIS[J].Gold Science and Techno-
logy,2014,22(5):69-73.[万孝衡,王新民,朱阳亚,等.基于组合赋权TOPSIS法的采场结构参数优选[J].黄金科学技术,2014,22(5):69-73.]

[1] 李地元, 杨博, 刘子达, 刘永平, 赵君杰. 基于集成树算法的岩石黏聚力和内摩擦角预测方法[J]. 黄金科学技术, 2024, 32(5): 847-859.
[2] 李垚熠, 陈国庆, 石明汉, 周玉新, 聂闻, 郑成. 基于LM-LSO算法的磷石膏堆场边坡形态与稳定性智能优化方法[J]. 黄金科学技术, 2024, 32(5): 882-893.
[3] 鲁旭, 谭宝会, 龚臻, 粟登峰, 张刚刚, 胡颖鹏. 软破矿岩条件下胶结充填法转分段崩落法研究及应用[J]. 黄金科学技术, 2024, 32(5): 905-915.
[4] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[5] 钟德云, 刘雨龙, 王李管. 矿山多级机站通风系统风机优化选型方法[J]. 黄金科学技术, 2024, 32(4): 666-674.
[6] 赵国彦, 胡凯译, 李洋, 刘雷磊, 王猛. 基于BWO-RF模型的岩体质量评价方法[J]. 黄金科学技术, 2024, 32(2): 270-279.
[7] 钟德云, 文历学, 王李管. 基于混合整数规划的风流两步骤调控优化方法[J]. 黄金科学技术, 2024, 32(2): 356-365.
[8] 凡兴禹, 王雪林. 基于改进XGBoost算法的深部巷道松动圈智能预测研究[J]. 黄金科学技术, 2024, 32(1): 109-122.
[9] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[10] 高峰, 李成成, 覃庆韩, 欧恩国. 基于RG-BN理论的破碎盘区矿柱群稳定性分析[J]. 黄金科学技术, 2023, 31(6): 900-910.
[11] 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679.
[12] 阮顺领,阮炎康,卢才武,顾清华. 基于红外图像的矿石传送带托辊异常检测[J]. 黄金科学技术, 2023, 31(1): 123-132.
[13] 杨应宝,伏彦雄,裴英杰,周强,肖庆飞. 易门铜业Φ2.4×3.6 m球磨机磨矿介质配比优化研究[J]. 黄金科学技术, 2023, 31(1): 163-170.
[14] 谭宝会,王永定,张志贵,龙卫国,李斌,何建元,龚臻. 复杂开采条件下低品位镍矿安全高效回采方案研究[J]. 黄金科学技术, 2023, 31(1): 88-101.
[15] 苏华友,王永定,谭宝会,龙卫国,杨宁,张志贵,陈星明. 大面积胶结充填体诱导冒落机理及其发展过程研究[J]. 黄金科学技术, 2022, 30(5): 713-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!