img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (2): 170-178.doi: 10.11872/j.issn.1005-2518.2018.02.170

• 采选技术与矿山管理 • 上一篇    下一篇

非均质岩石破裂及声发射演化数值模拟

程昊1,2,徐涛2*,周广磊2,房珂2   

  1. 1.中交天航港湾建设工程有限公司,天津 300450;
    2.东北大学岩石破裂与失稳研究中心,辽宁 沈阳 110819
  • 收稿日期:2017-07-13 修回日期:2017-09-29 出版日期:2018-04-30 发布日期:2018-05-19
  • 通讯作者: 徐涛(1975-),男,湖北随州人,教授、博士生导师,从事岩石破裂失稳研究工作。xutao@mail.neu.edu.cn
  • 作者简介:程昊(1991-),男,山东菏泽人,硕士研究生,从事岩石力学研究工作。chengsir0727@163.com
  • 基金资助:

    国家973计划项目“重大岩体工程灾害模拟、软件及预警方法基础研究”(编号:2014CB047100)、国家自然科学基金项目“蠕变—疲劳交互作用下岩石变形损伤断裂机理研究”(编号:41672301)和“温度—渗流—应力耦合作用下脆性岩石蠕变特性及蠕变机理研究”(编号:51474051)、中央高校基本科研业务费资助项目“深部岩体蠕变损伤失稳多场耦合作用机理研究”(编号:N150102002)和黑龙江省科学基金项目“煤矿深部开采多物理场耦合作用下物化型软岩破坏机理”(编号:E2015031)联合资助
     

Numerical Simulation of Fracture and Acoustic Emission Evolution of Hetero-geneous Rocks

CHENG Hao 1,2,XU Tao 2,ZHOU Guanglei 2,FANG Ke 2   

  1. 1.Tianjin Harbour Engineering Co.,Ltd.,China Communications Construction Co.,Ltd.,Tianjin   300450,China;2.Centre for Rock Instability & Seismicity Research,Northeastern University,Shenyang   110819,China
  • Received:2017-07-13 Revised:2017-09-29 Online:2018-04-30 Published:2018-05-19

摘要: 在应变软化本构模型的基础上,考虑岩石材料非均质性和损伤过程中力学性质的弱化特性,建立了非均质岩石损伤软化本构模型,推导了损伤软化本构模型的差分格式,在VC++环境下实现了损伤软化本构模型在FLAC3D中的二次开发。研究了不同均质度对岩石变形强度等力学特性的影响,以及岩石破坏过程中的声发射演化特性。研究表明:随着岩石均质度的增高,岩石的破坏过程由延性向脆性转化,岩石峰值强度和峰值应变不断增大,而残余强度降低;当岩石均质度较低时,岩石破坏剪切带的形成会发生滞后,随着均质度的增加,单轴加载条件下岩石声发射体现出由强度低、频率高向强度高、频率低转化的特性,并表现出群震型、前震—主震—余震型和主震型3种典型模式。

关键词: FLAC3D, 应变软化, 非均质, 岩石破坏, 声发射, 抗压强度

Abstract: Based on strain softening constitutive model,a damage softening constitutive model of heterogeneous rocks was established by considering the heterogeneity of rock material and the weakening characteristics of mechanical properties during damage process.The difference scheme of damage softening constitutive model was deduced and the further development of the damage softening constitutive model was achieved in FLAC3D under VC++ environment.The influence of different homogenization on mechanical properties and acoustic emission characteristic of rocks were numerically investigated. The results show that material heterogeneity has remarkable influence on the mechanical properties of rock samples. With the increase of material heterogeneity,there is a transition from ductile behavior into brittle fracture in rock failure. Meanwhile,peak strength and peak strain of rocks gradually increase,but residual strength of rocks gradually decreases.It is also found that the through-going shear fractures in the rock specimen lag behind for the more heterogeneous rock. Furthermore,there is a transition from low intensity and high frequency to high intensity and low frequency in AE characteristics of rock under uniaxial loading with an increase in heterogeneity of rock,and three typical AE patterns,swarm shock,foreshock-main shock-aftershock,and main shock,can be observed.

Key words: FLAC3D, strain softening, heterogeneity, rock failure, acoustic emission, compressive strength

中图分类号: 

  • TU443

[1] Ohnaka M,Mogi K.Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J].Journal of Geophysical Research Solid Earth,1982,87(B5):3873-3884.
[2] 陈永强.非均匀材料有效力学性能和破坏过程的数值模拟[D].北京:清华大学,2001.
 Chen Yongqiang.Numerical Simulations of Effective mechanical Properties and Failure process of Heterogeneous Materials[D].Beijing:Tsinghua University,2001.
[3] Feng X T,Pan P Z,Zhou H.Simulation of the rock microfracturing process under uniaxial compression using an elastic-plastic cellular automaton[J].International Journal of Rock Mechanics & Mining Sciences,2006,43(7):1091-1108.
[4] Pan P Z,Feng X T,Hudson J A.Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata[J].International Journal of Rock Mechanics & Mining Sciences,2009,46(4):674-685.
[5] Potyondy D,Cundall P.A bonded-particle model for rock [J].International Journal of Rock Mechanics & Mining Sciences,2004,41 (8):1329-1364.
[6] Fakhimi A,Villegas T.Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture[J].Rock Mechanics & Rock Engineering,2007,40(2):193-211.
[7] 裴觉民.数值流形方法与非连续变形分析[J]. 岩石力学与工程学报,1997,16(3):279-292.
 Pei Juemin.Numerical manifold method and discontinuous deformation analysis[J].Chinese Journal of Rock Mechanics and Engineering,1997,16(3):279-292.
[8] Ma G,An X,He L.The numerical manifold method:Areview[J].International Journal of Computational Methods,2010,7(1):1-32.
[9] Tang C A.Numerical simulation of progressive rock failure and associated seismicity[J].International Journal of Rock Mechanics & Mining Sciences,1997,34(2):249-261.
[10] Tang C A,Liu H,Lee P K K,et al.Numerical studies of the influence of microstructure on rock failure in uniaxial compression - Part I:Effect of heterogeneity[J].International Journal of Rock Mechanics & Mining Sciences,2000,37(4):555-569.
[11] 徐涛,杨天鸿,唐春安,等.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(10):1560-1564,1574.
 Xu Tao,Yang Tianhong,Tang Chunan,et al.Numerical simulation of failure and induced acoustic emission characteristics of coal/rock under pore pressure[J].Rock and Soil Mechanics,2004,25(10):1560-1564,1574.
[12] Xu T,Tang C A,Zhao J,et al.Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks [J].Geophysical Journal International,2012,189 (3):1781-1796.
[13] ITASCA Consulting Group,Inc.UDEC:Universal distinct  element  code  theory  and  background[M].Minneapolis,Minnesota:Itasca  consulting  Group  Inc,2005.
[14] Schlangen E,Van Mier J G M. Crack propagation in sandstone:A combined  experimental  and  numerical approach[J].Rock Mechanics and Rock Engineering,1995,28(2):93-110.
[15] Chen S,Zhao J.A study of UDEC modelling for blast wave propagation in jointed rock masses[J].International Journal of Rock Mechanics & Mining Sciences,1998,35 (1):93-99.
[16] 潘鹏志. 岩石破裂过程及其渗流—应力耦合特性研究的弹塑性细胞自动机模型[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
 Pan Pengzhi.Research on Rock Fracturing Process and Coupled Hydro-mechanical Effect Using an Elasto-plastic Cellular Automation[D].Wuhan:Institute of Rock & Soil Mechanics,Chinese Academy of  Sciences,2006.
[17] 陈育民,刘汉龙.邓肯—张本构模型在FLAC3D 中的开发与实现[J].岩土力学,2007,28(10):2123-2126.
 Chen Yumin,Liu Hanlong.Development and implementation of Duncan-Chang constitutive model in FLAC3D[J]. Rock and Soil Mechanics,2007,28(10):2123-2126.
[18] 杨文东,张强勇,张建国.基于FLAC3D 的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学,2010,31(6):1956-1964.
 Yang Wendong,Zhang Qiangyong,Zhang Jianguo.Second development of improved Burgers creep damage constitutive model of rock based on FLAC3D[J].Rock and Soil Mechanics,2010,31(6):1956-1964.
[19] Weibull W.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics,1951,18(3):293-297.
[20] Itasca Consulting Group. FLAC3D User’s Manual (Version 3.0)[M].Minneapolis,Minnesota:Itasca consulting Group Inc,2005.
[21] Mogi K.Earthquakes and fractures [J]. Tectonophysics,1967,5(1):35-55.
[22] Jeager J C.Rock failure at lower confining pressure[J].Engineering,1960,189: 283-284.
[23] Chong K P,Hoyt P M,Smith J W,et al.Effect of strain rate on oil shale fracturing[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980,17(1):35-43.
[24] 雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10):1693-1698.
 Lei Yuanjian,Wang Shuilin.Stability analysis of jointed rock slope by strength reduction method based on UDEC [J].Rock and Soil Mechanics,2006,27(10):1693-1698.
[25] Mouthereau F,Fillon C,Ma K F.Distribution of strain rates in the Taiwan orogenic wedge[J].Earth and Planetary Science Letters,2009,284(3/4):361-385.
[26] 赵伏军,李夕兵,赵国彦,等.新城金矿顶底柱开采稳定性研究[J].黄金科学技术,2002,10(6):15-19.
 Zhao Fujun,Li Xibing,Zhao Guoyan,et al.Research on stability of the roof and  bottom  pillar  in  Xincheng  gold  mine [J].Gold  Science  and  Technology,2002,10(6):15-19.
[27] 毕洪涛,王存文,李威.海下金矿床开采岩体破裂及灾变的微震监测研究 [J].黄金科学技术,2010,18(5):52-55.
 Bi Hongtao,Wang Cunwen,Li Wei.The study of microseismic monitoring on rock failure and disaster-induced in gold mining undersea[J].Gold Science and Technology,2010,18(5):52-55.

[1] 石英, 聂锐洋, 周诗彤, 陆思成, 卿子萱. 含硫酸盐废水对磷石膏胶结充填体材料性能的影响[J]. 黄金科学技术, 2024, 32(3): 416-424.
[2] 刘志祥,晏孟洋,张双侠,熊帅,王凯. 考虑岩石微缺陷影响的损伤本构模型[J]. 黄金科学技术, 2023, 31(3): 507-515.
[3] 周可凡,刘科伟,郭腾飞. 基于声发射的倾斜软硬互层岩石破坏特性研究[J]. 黄金科学技术, 2022, 30(6): 923-934.
[4] 黄晓辉,刘科伟,周占星,马泗洲,郭腾飞. 高温后红砂岩压剪下声发射及其微观特性研究[J]. 黄金科学技术, 2022, 30(5): 764-777.
[5] 徐先锋,邢鹏飞,汪泳,王岁红. 基于L型回弹仪的岩石力学特性试验研究[J]. 黄金科学技术, 2022, 30(4): 550-558.
[6] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[7] 郑雨晴,陈勇,王进华,尚雪义,刘彩云. 联合改进作用距离和Dijkstra算法的复杂结构声发射定位方法及应用[J]. 黄金科学技术, 2022, 30(3): 427-437.
[8] 谢学斌, 刘涛, 张欢. 基于改进CEEMDAN-DCNN的声发射源识别分类方法[J]. 黄金科学技术, 2022, 30(2): 209-221.
[9] 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873.
[10] 海龙,徐博,赵鑫. 建筑垃圾制备膏体充填材料骨料级配优化[J]. 黄金科学技术, 2021, 29(4): 573-581.
[11] 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592.
[12] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[13] 郭婧宇,蒲成志,贺桂成,李益龙,杨少峰,曾佳君. 静态—准静态加载下含裂隙类岩材料破断试验及声发射特性分析[J]. 黄金科学技术, 2020, 28(6): 877-884.
[14] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
[15] 李怀鑫, 林斌, 陈士威, 王鹏. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!