img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (4): 503-510.doi: 10.11872/j.issn.1005-2518.2018.04.503

• • 上一篇    下一篇

卧虎山铁矿采场极限暴露面积回归优化模型

胡建华1(),任启帆1,亓中华2,张纪伟2   

  1. 1中南大学资源与安全工程学院,湖南 长沙 410083
    2山东华联矿业股份有限责任公司,山东 沂源 256119
  • 收稿日期:2018-03-31 修回日期:2018-05-23 出版日期:2018-10-10 发布日期:2018-10-17
  • 作者简介:胡建华(1975-),男,湖南衡阳人,教授,从事高效安全采矿技术与工程稳定性的研究工作。hujh21@126.com
  • 基金资助:
    国家自然科学基金项目“深部采动下地质结构体跨尺度时变力学行为试验及机理”(41672298);和湖南省自然科学基金项目“深部采动下的多尺度力学行为机理及其试验研究”(2016JJ21)

Regress Optimize Model of Limit Exposure Area to Stope in Wohushan Iron Mine

Jianhua HU1(),Qifan REN1,Zhonghua QI2,Jiwei ZHANG2   

  1. 1School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2Shandong Hualian Mining Co.,Ltd.,Yiyuan 256119,Shandong,China
  • Received:2018-03-31 Revised:2018-05-23 Online:2018-10-10 Published:2018-10-17

摘要:

地下矿山开采中,合理的采场暴露面积是保障采矿作业安全的前提,采场暴露面积作为地下采场的主要结构参数需要进行优化。以卧虎山矿27-31线为研究对象,运用3DMine-Midas- Flac3D耦合建模技术,构建了地表、矿体和采场的精细化模型,在采场长度参数为30 m和40 m的条件下,设计了10种采场暴露面积计算方案,通过数值模拟获得采场顶板最大拉应力和两帮最大压应力,基于此建立了采场暴露面积与顶板最大拉应力及两帮最大压应力的回归优化模型,在有安全系数的保障下确定了采场极限暴露面积。研究结果表明:(1)经采场稳定分析,最大压应力主要出现在采场两帮的围岩,而最大拉应力出现在顶底板;(2)通过建立采场暴露面积与最大拉应力和最大压应力的回归函数关系曲线,获得暴露面积与应力的关系规律,即在相同采场暴露面积条件下,采场越长则拉应力越小,而在相同拉压应力限值情况下,采场越长则极限暴露面积越大;(3)以矿山生产安全系数1.3为基数,通过回归函数曲线规律,根据采场矿体的赋存条件,以30 m和40 m的采场长度值,确定卧虎山矿的极限暴露面积分别为450 m2和600 m2。当岩体力学参数改变时,亦可采用回归函数曲线规律自适应判定采场极限暴露面积和采场跨度。

关键词: 采场稳定性, 结构参数, 采场暴露面积, 精细化建模, 数值模拟, 线性回归, 优化模型, 安全系数

Abstract:

In the mining of underground mines,the reasonable exposure area of stope is precondition to ensure the safety of mining operation.As the main structural parameter of underground mines,it is necessary for exposure area to be optimized.Taking Wohushan mine 27-31 line as the research object,a refined model of surface,orebody and stope model was built by using 3DMine-Midas-Flac3Dcoupling modeling technology was built by .10 calculation schemes of stope exposure area were designed under the length conditions of 30 m and 40 m for stope.Maximum tension stress of stope roof and maximum compressive stress of wall rock were obtained through numerical simulation.The regression optimization model of exposure area with tensile stress of roof and compressive stress of wall rock was established to determine the reasonable limit exposure area of stope under the protection of safety factor.The results showed that:(1)Maximum compressive stress mainly occurs in stope pillar and maximum tensile stress appears in stope roof by stope stability analysis;(2)The relationship between exposure accumulation and stress was obtained by establishing regression function curve of exposed area and maximum tensile stress and maximum compressive stress of stope.Under the same stope exposure area condition,the longer the stope,the smaller tensile stress.With same stress limit case,the longer the stope,the bigger exposure limit;(3)Taking the mine production safety coefficient of 1.3 as the base,according to occurrence condition of orebody and stope,the limit exposed area of Wohushan mine was determined to be 450 m2and 600 m2by the regression function curve using 30 m and 40 m length of stope. When rock mass mechanical parameters change,the limit exposure area and span value of stope was confirmed through adaptive decision of the regression function curve.

Key words: stability of stope, structural parameters, stope exposure area, fine modeling, numerical simulation, linear regression, optimize model, safety factor

中图分类号: 

  • TD853.3

图1

上向高分层预控顶嗣后充填采矿法 1-锚杆;2-人工假顶;3-胶结充填体;4-分层底板;5-炮孔;6-切割天井;7-穿脉;8-矿石;9-充填挡墙;10-分层联络道;11-阶段斜坡道;12-阶段运输巷道;13-出矿巷道;14-分层溜井;15-阶段溜井"

图2

三维数值计算模型"

表1

卧虎山矿岩岩体力学参数"

岩体名称 弹性模量(E)/GPa 泊松比( μ 抗拉强度/MPa 抗压强度/MPa 内聚力( C )/MPa 内聚力( φ )/(°) 密度( ρ )/(kg·m-3
矿体 11.67 0.25 3.5 23.30 4.32 29.42 3 490
围岩 11.67 0.26 1.5 10.54 3.20 27.48 2 680
夹石 4.22 0.26 0.5 1.03 0.32 25.56 2 680

表2

回采方案设计"

方案编号 因素
采场长度/m 采场跨度/m 采场暴露面积/m2
1 30 10 300
2 30 12.5 375
3 30 15 450
4 30 17.5 525
5 30 20 600
6 40 10 400
7 40 12.5 500
8 40 15 600
9 40 17.5 700
10 40 20 800

图3

4种方案沿倾向主应力云图 σ c m a x 为最小主应力; σ t m a x 为最大主应力"

表3

10种方案沿倾向应力值"

方案编号 顶板最大拉应力/MPa 两帮最大压应力/MPa
1 1.87 14.44
2 2.41 15.96
3 2.60 17.51
4 2.82 19.02
5 3.19 21.47
6 1.43 13.79
7 2.19 15.06
8 2.70 17.35
9 3.14 20.11
10 3.94 21.91

图4

不同采场暴露面积条件下顶板最大拉应力"

图5

不同暴露面积条件下两帮最大压应力"

表4

暴露面积与最大拉应力、最大压应力线性拟合结果"

应力类型 采场长/m 斜率 截距 方差 规律模型
顶板最大拉应力 30 0.00407 0.748 0.955 y = 0.0041 x + 0.748
40 0.00597 -0.902 0.986 y = 0.006 x - 0.902
两帮最大压应力 30 0.02283 7.708 0.9849 y = 0.0228 x + 7.708
40 0.02129 4.87 0.9834 y = 0.0213 x + 4.87

图6

拉应力反演极限暴露面积图"

图7

压应力反演极限暴露面积"

1 康虔,张钦礼,张楚旋,等.理想点法在采场结构参数优化中的应用[J].黄金科学技术,2018,26(1):25-30.
Kang Qian , Zhang Qinli , Zhang Chuxuan ,et al.Application of ideal point method in mining stope structural parameters optimization[J].Gold Science and Technology,2018,26(1):25-30.
2 胡建华,任启帆,黄仁东,等.地下矿山采场结构参数的核主成分分析法优化[J].矿冶工程,2018,38(2):25-29,33.
Hu Jianhua , Ren Qifan , Huang Rendong ,et al.Optimization of structural parameters of stope in underground mine with kernel principal component analysis[J].Mining and Metallurgical Engineering,2018,38(2):25-29,33.
3 邓红卫,杨懿全,邓畯仁,等.采空区下方高应力环境下深部矿体回采时序研究[J].黄金科学技术,2017,25(2):62-69.
Deng Hongwei , Yang Yiquan , Deng Junren ,et al.Study on mining sequence of deep orebody under high stress environment below goaf[J].Gold Science and Technology,2017,25(2):62-69.
4 孙杨,罗黎明,邓红卫.金属矿山深部采场稳定性分析与结构参数优化[J].黄金科学技术,2017,25(1):99-105.
Sun Yang , Luo Liming , Deng Hongwei .Stability analysis and parameter optimization of stope in deep metal mines[J].Gold Science and Technology,2017,25(1):99-105.
5 甯瑜琳,胡建华.缓倾斜薄矿体采场极限暴露面积与参数优化[J].矿冶工程,2014,34(1):14-17.
Ning Yulin , Hu Jianhua .Maximum exposed area of stope with gently inclined thin orebody and parameters optimization[J].Mining and Metallurgical Engineering,2014,34(1):14-17.
6 胡建华,习智琴,罗先伟,等.基于岩体时变力学参数的深部矿段回采顺序优化[J].中南大学学报(自然科学版),2017,48(10):2761-2766.
Hu Jianhua , Xi Zhiqin , Luo Xianwei ,et al.Optimization of mining sequence based on rock mass time-varying mechanics parameters[J].Journal of Central South University(Science and Technology),2017,48(10):2761-2766.
7 倪帮荣.采场暴露面积与地压活动规律初探[J].化工矿物与加工,2011(6):31-33.
Ni Bangrong .Discussion of laws between expoused stope area and ground pressure[J].Industrial Minerals and Processing,2011(6):31-33.
8 常贯峰,路增祥,常帅,等.毛公铁矿大结构参数无底柱分段崩落法多分段放矿实验[J].金属矿山,2017,46(11):48-51.
Chang Guanfeng , Lu Zengxiang , Chang Shuai ,et al.Multi-sublevel ore drawing test of non-pillar sublevel caving method with large structural parameters in Maogong iron mine[J].Mental Mine,2017,46(11):48-51.
9 孔德阔,李长洪,魏晓明.基于Mathews稳定图的采场暴露面积计算[J].现代矿业,2015(5):6-8.
Kong Dekuo , Li Changhong , Wei Xiaoming .Computation of stope exposure area based on Mathews stability diagram[J].Modern Mining,2015(5):6-8.
10 尹土兵,张鸣鲁.基于Mathews稳定图法的采场暴露面积确定[J].现代矿业,2015,31(6):8-10.
Yin Tubing , Zhang Minglu .Determination on the exposure area in stope based on Mathews stability graphic method[J].Modern Mining,2015,31(6):8-10.
11 张小华,王建国,刘国寅,等.Mathew法在矿山深部采场稳定性分析中的应用[J].有色金属(矿山部分),2017,69(6):18-20.
Zhang Xiaohua , Wang Jianguo , Liu Guoyin ,et al.Application of Mathew method in the stability analysis of stope in deep mines[J].Nonferrous Metals(Mining Section),2017,69(6):18-20.
12 Chen Q S , Zhang Q L , Fourie A ,et al.Experimental investigation on the strength characteristics of cement paste backfill in a similar stope model and its mechanism[J].Construction & Building Materials,2017,154:34-43.
13 Yang Z , Zhai S , Gao Q ,et al.Stability analysis of large-scale stope using stage subsequent filling mining method in Sijiaying iron mine[J].Journal of Rock Mechanics and Geotechnical Engineering,2015,7(1):87-94.
14 刘增辉,高谦.两中段开采的水平矿柱失稳影响因素分析与方案优化——以金川二矿区为例[J].中国安全科学学报,2013,23(11):79-84.
Liu Zenghui , Gao Qian .Analysis of factors influencing horizontal pillar instability and optimization of two-level mining plans[J].China Safety Science Journal,2013,23(11):79-84.
15 罗周全,管佳林,冯富康,等.盘区隔离矿柱采场结构参数数值优化[J].采矿与安全工程学报,2012,29(2):261-264.
Luo Zhouquan , Guan Jialin , Feng Fukang ,et al.Stope structural parameters of panel isolation pillar numerical optimization[J].Journal of Mining and Safety Engineering,2012,29(2):261-264.
16 胡建华,雷涛,周科平,等.基于采矿环境再造的开采顺序时变优化研究[J].岩土力学,2011,32(8):2517-2522.
Hu Jianhua , Lei Tao , Zhou Keping ,et al.Time-varying optimization study of mining sequence based on reconstructed mining environment[J].Rock and Soil Mechanics,2011,32(8):2517-2522.
17 Selcuk L , Gokce H S .Estimation of the compressive strength of concrete under point load and its approach to strength criterions[J].Ksce Journal of Civil Engineering,2015,19(6):1-8.
18 Karim R , Simangunsong G M , Sulistianto B ,et al.Stability analysis of paste fill as stope wall using analytical method and numerical modeling in the Kencana underground gold mining with long hole stope method[J].Procedia Earth and Planetary Science,2013,6(6):474-484.
19 Shnorhokian S , Mitri H S , Moreau-Verlaan L. Stability assessment of stope sequence scenarios in a diminishing ore pillar[J].International Journal of Rock Mechanics & Mining Sciences,2015,74:103-118.
20 Hu J H , Yang C , Zhou K P ,et al.Stability of undercut space in fragment orebody based on key block theory[J].Transactions of Nonferrous Metals Society of China,2016,26(7):1946-1954.
[1] 鲁旭, 谭宝会, 龚臻, 粟登峰, 张刚刚, 胡颖鹏. 软破矿岩条件下胶结充填法转分段崩落法研究及应用[J]. 黄金科学技术, 2024, 32(5): 905-915.
[2] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[3] 李炎, 王建国, 魏生云, 李国璋, 胡建, 王志男. 西藏德新铅多金属矿床地球物理与地球化学综合找矿研究[J]. 黄金科学技术, 2024, 32(3): 400-415.
[4] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[5] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[6] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[7] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[8] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[9] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[10] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[11] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[12] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[13] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[14] 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679.
[15] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!