img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (4): 511-519.doi: 10.11872/j.issn.1005-2518.2018.04.511

• • 上一篇    下一篇

基于蠕变试验的浅埋空区群结构时变力学特性研究

谷中元1,2(),周科平1   

  1. 1 中南大学资源与安全工程学院,湖南省深部金属矿开发与灾害控制重点实验室,湖南 长沙 410083
    2吉林东北亚国际工程技术集团有限公司,吉林 长春 130000
  • 收稿日期:2018-04-06 修回日期:2018-07-20 出版日期:2018-10-10 发布日期:2018-10-17
  • 作者简介:谷中元(1979-),男,博士研究生,高级工程师,从事采矿工艺和充填理论研究工作。13214436200@163.com
  • 基金资助:
    国家自然科学基金项目“空区群结构体灾变链演化机制及诱导干扰控制机理研究”(51274253);“裂隙岩体冻融损伤时空演化规律及应用研究”(51474252)

Study on Time-Variant Mechanics Properties of Shallow Goaf Group Based on Creep Experiment

Zhongyuan GU1,2(),Keping ZHOU1   

  1. 1 Hunan Key Laboratory of Mineral Resources Exploitation and Hazard Control for Deep Metal Mines,School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2Jilin Northeast Asia International Engineering Technology Group Co.,Ltd, Changchun 130000,Jilin,China
  • Received:2018-04-06 Revised:2018-07-20 Online:2018-10-10 Published:2018-10-17

摘要:

空区结构力学特性随时间发生劣化是导致地表塌陷和空区坍塌的重要因素之一。以古马岭金矿浅埋空区群为研究对象,结合矿岩的压缩蠕变试验获取了围岩蠕变模型,利用数值模拟方法研究了该空区群结构时变力学特性。结果显示:矿岩的蠕变力学特性可用Cvisc模型加以描述;空区群形成后,地表岩体和围岩内部的应力和位移均随时间推移而发生变化,表现出显著的时变力学特性;空区群顶板下沉位移随时间加速增长,且中部采空区顶板位移最大,第5年时已达0.24 m,表明采空区顶板会随着时间发展而逐渐坍塌;矿柱两侧均出现随时间增大的横向变形,表面围岩逐渐片落,导致矿柱不断变窄,可能引起空区群发生大规模破坏;地表围岩形成以空区群中部为中心的塌陷区域,且塌陷深度和范围均随时间加速增长,在第5年时达到0.21 m,需要采取措施进行空区治理。

关键词: 空区群, 时变力学, 蠕变试验, 地表塌陷, 顶板下沉, 矿柱破坏

Abstract:

One of important factors that lead to ground and goaf collapse is the mechanical properties deterioration of shallow goaf group through time.Taking the shallow goaf group in Gumaling gold mine as an example,the creep model of the surrounding rock was obtained from rock creep test,and the time-variant mechanics properties of the shallow goaf group was analyzed by using numerical simulation method.The results show that the creep mechanical properties of the rock can be described by Cvisc model.After the goaf group is formed,the stress and displacement of ground rock mass and surrounding rock will change over time,showing significant time-variant mechanical characteristics.The roof displacement of the goaf group increases over time.The largest displacement is in the central goaf group,and the displacement is 0.24 m at the fifth year,indicating that the roof of goaf group will gradually collapse.The lateral deformation at two sides of pillar increases with time.Due to the surface failure of surrounding rock,the pillar continually narrows down,leading to the large-scale destruction of the goaf group.The ground forms a subsidence area centered on the central part of goaf group.The depth and extent of subsidence area increase with time,reaching 0.21 m at the fifth year. Some measures should be taken to protect the goaf group.

Key words: goaf group, time-varying mechanics, creep test, ground collapse, roof subsidence, pillar failure

中图分类号: 

  • TD851

图1

试件A1的蠕变曲线"

表1

围岩压缩蠕变结果"

蠕变应力/MPa 起始应变值/% 稳定应变值/% 蠕变应变/%
24.486 1.425 1.5638 0.1388
48.972 1.802 1.9019 0.0999
73.458 2.125 2.2678 0.1428
97.944 2.454 2.5043 0.0503
122.430 2.828 2.9168 0.0888

表2

岩石试样压缩蠕变参数"

试件 高度/mm 直径/mm 蠕变抗压强度/MPa 蠕变系数
A1 99.43 49.52 123.521 0.841
A2 100.22 48.65 111.844 0.761
A3 99.78 48.79 119.249 0.812

表3

压缩蠕变模型参数"

试件 E M /GPa η M /(GPa·s) E K /GPa η K /(GPa·s)
平均值 4.52 4.07×108 62.93 1.61×103
A1 4.17 5.39×108 62.45 1.58×103
A2 4.51 2.16×108 62.72 1.28×103
A3 4.87 4.67×108 63.61 1.98×103

图2

试验与模拟蠕变曲线对比"

图3

矿山数值模拟模型 (a)整体计算模型;(b)模型剖面图"

表4

数值模拟计算参数"

材料 弹性模量/GPa 泊松比 内聚力/MPa 内摩擦角/(°) 抗拉强度/MPa
矿体 14.3 0.30 6.94 44.96 0.7
围岩 19.8 0.31 7.60 40 1.5

图4

静力分析结果 (a)回采结束应力云图;(b)回采结束位移云图"

图5

蠕变位移云图"

图6

顶板应力及位移变化 (a)顶板第5年最大主应力;(b)顶板最大主应力曲线;(c)顶板竖向位移曲线"

图7

矿柱应力及位移变化 (a)矿柱水平位移变化云图;(b)矿柱最大水平位移曲线;(c)矿柱最大剪应力曲线"

图8

地表位移变化图 (a)第5年地表水平位移云图;(b)地表水平位移曲线;(c)地表竖向位移曲线"

图9

实测地表位移变化"

1 马海涛.“11.6”特别重大坍塌事故矿区采场稳定性三维数值模拟分析[J].中国安全生产科学技术,2007,3(6):68-72.
Ma Haitao .3D-Numerical simulation of stope stability in"11.6" accident of gypsum mine collapse[J].Journal of Safety Science and Technology,2007,3(6):68-72.
2 Wang J A , Shang X C , Ma H T .Investigation of catastrophic ground collapse in Xingtai gypsum mines in China[J].International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1480-1499.
3 Ma H T , Wang J A , Wang Y H .Study on mechanics and domino effect of large-scale goaf cave-in[J].Safety Science,2012,50(4):689-694.
4 武光明,郑怀昌,肖超,等.地下采空区利用及其稳定性分析[J].化工矿物与加工,2015(7):32-36.
Wu Guangming , Zheng Huaichang , Xiao Chao ,et al.Analysis of utilization and stability of underground mined-out area[J].Industrial Minerals & Processing,2015(7):32-36.
5 赵奎.岩金矿山采空区及残留矿柱回采稳定性研究[J].岩石力学与工程学报,2003,22(8):1404.
Zhao Kui .Stability study of mined-out areas and recovery of residual pillars in rocky gold mine[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(8):1404.
6 刘艳红,罗周全.采空区失稳的安全流变—突变理论分析[J].工业安全与环保,2009,35(9):5-7.
Liu Yanhong , Luo Zhouquan .Analysis of cavity instability based on safety rheology-mutation[J].Industrial Safety and Environmental Protection,2009,35(9):5-7.
7 何峰,王来贵,于永江.采空区悬顶岩梁模型及其流变分析[J].矿山压力与顶板管理,2005,22(4):84-85,88.
He Feng , Wang Laigui , Yu Yongjiang .Rock beam model of hang arch in operation goaf and rheologic analysis[J].Ground Pressure and Strata Control,2005,22(4):84-85,88.
8 孙琦,张向东,张淑坤,等.多向荷载作用下采空区顶板—矿柱流变力学模型[J].防灾减灾工程学报,2015,35(5):679-684.
Sun Qi , Zhang Xiangdong , Zhang Shukun ,et al.Rheological mechanics model of roof-pillars in mine goaf under multidirectional loads[J].Journal of Disaster Prevention and Mitigation Engineering,2015,35(5):679-684.
9 张耀平,曹平,袁海平,等.复杂采空区稳定性数值模拟分析[J].采矿与安全工程学报,2010,27(2):233-238.
Zhang Yaoping , Cao Ping , Yuan Haiping ,et al.Numerical simulation on stability of complicated goal[J].Journal of Mining ang Safety Engineering,2010,27(2):233-238.
10 李铁,刘诗杰,马海涛,等.采空区顶板流变破断发展及灾变时间[J].中国有色金属学报,2016,26(3):666-672.
Li Tie , Liu Shijie , Ma Haitao ,et al.Development and catastrophe time of rheological collapse in goaf roof[J].The Chinese Journal of Nonferrous Metals,2016,26(3):666-672.
11 王金安,李大钟,马海涛.采空区矿柱—顶板体系流变力学模型研究[J].岩石力学与工程学报,2010,29(3):577-582.
Wang Jin’an , Li Dazhong , Ma Haitao .Study of rheological mechanical model of pillar-roof system in mined-out area[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(3):577-582.
12 孙琦,魏晓刚,卫星,等.采空区矿柱流变特性对露天矿边坡稳定性的影响研究[J].中国安全科学学报,2014,24(8):85-91.
Sun Qi , Wei Xiaogang , Wei Xing ,et al.Study on effects of pillars rheological properties on open-pit slope stability[J].China Safety Science Journal,2014,24(8):85-91.
13 梁冰,汪北方,姜利国,等.浅埋采空区垮落岩体碎胀特性研究[J].中国矿业大学学报,2016,45(3):475-482.
Liang Bing , Wang Beifang , Jiang Liguo ,et al.Broken expand properties of caving rock in shallow buried goal[J].Journal of China University of Mining & Technology,2016,45(3):475-482.
14 胡高建,杨天鸿,张飞,等.复杂空区群回采围岩破坏模式及区域并行研究[J].采矿与安全工程学报,2017,34(3):565-572.
Hu Gaojian , Yang Tianhong , Zhang Fei ,et al.Parallel computing technologies for the failure mode and area of surrounding rock in complex goals[J].Journal of Mining & Safety Engineering,2017,34(3):565-572.
15 孙琦,张向东,杜东宁,等.浅埋采空区对路基稳定性影响的数值模拟[J].中国地质灾害与防治学报,2015,26(2):127-131.
Sun Qi , Zhang Xiangdong , Du Dongning ,et al.Numerical simulation of the impact of shallow seam goaf on highway safety[J].The Chinese Journal of Geological Hazard and Control,2015,26(2):127-131.
16 于跟波,杨鹏,陈赞成.缓倾斜薄矿体矿柱回采采场围岩稳定性研究[J].煤炭学报,2013,38(增2):294-298.
Yu Genbo , Yang Peng , Chen Zancheng .Study on surrounding rock stability of pillar extraction in thin gently inclined ore body[J].Journal of China Coal Society,2013,38(Supp.2):294-298.
17 Lu H J , Yan S H , Pan G H .Stability comprehensive analysis model of iron deposit retained goaf[J].Applied Mechanics and Materials,2013,256(1):2688-2691.
18 张洋,李占金,李示波,等.某矿采空区数值模拟研究与稳定性分析[J].矿业研究与开发,2013,33(4):59-61.
Zhang Yang , Li Zhanjin , Li Shibo ,et a1.Numerical simulation and stability analysis of mined-out area in a mine[J].Mining Research and Development,2013,33(4):59-61.
19 Castellanza R , Gerolymatou E , Nova R. An attempt to predict the failure time of abandoned mine pillars[J].Rock Mechanics and Rock Engineering,2008,41(3):377-401.
20 杨逾,于洁瑜,王宇.条带开采采空区覆岩移动规律数值模拟分析[J].中国地质灾害与防治学报,2017,28(1):96-101.
Yang Yu , Yu Jieyu , Wang Yu .Numerical simulation study on movement law of overlying strata of goaf in strip mining[J].The Chinese Journal of Geological Hazard and Control,2017,28(1):96-101.
21 王军,蒋清南,曹平,等.流变作用下露采岩质边坡和采空区的稳定性分析[J].矿业研究与开发,2011,31(5):87-89.
Wang Jun , Jiang Qingnan , Cao Ping ,et a1.Analysis on stability of goaf and open-pit rock slope based on rheological mechanics of rock material[J].Mining Research and Development,2011,31(5):87-89.
22 姜立春,贾晓川.采空区群的亚稳定“短板”单元甄别[J].地下空间与工程学报,2017,13(增1):344-348.
Jiang Lichun , Jia Xiaochuan .Short board metastable unit search method for group of mined out area[J].Chinese Journal of Underground Space and Engineering,2017,13(Supp.1):344-348.
[1] 王史文, 王晟, 凌炜佳, 朱忠华, 杨鑫源, 沙文忠, 杨家宏. 基于无人机航测的自然崩落法采矿地表塌陷规律研究[J]. 黄金科学技术, 2024, 32(4): 654-665.
[2] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[3] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[4] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[5] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[6] 谢学斌,熊胡晨,谢和荣,李建坤,田听雨. 考虑水平荷载的采空区群系统灾变失稳模型[J]. 黄金科学技术, 2019, 27(3): 368-377.
[7] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
[8] 肖伟晶,陈辰,李永欣,王晓军,曹世荣,韩建文. 分级加载条件下深部灰岩蠕变试验及模型[J]. 黄金科学技术, 2017, 25(2): 76-82.
[9] 王培月,王谦源. 玲珑金矿东山塌陷区的锚注联合治理[J]. J4, 2004, 12(6): 27-30.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!