img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (5): 635-646.doi: 10.11872/j.issn.1005-2518.2018.05.635

• • 上一篇    下一篇

基于博弈论和模糊综合评判的锌冶炼企业清洁生产评价

李欢1(),明俊桦1,石晓凤2   

  1. 1 中南大学资源与安全工程学院,湖南 长沙 410083
    2 湖北省沙市中学,湖北 荆州 434000
  • 收稿日期:2018-07-18 修回日期:2018-09-29 出版日期:2018-10-20 发布日期:2018-10-31
  • 作者简介:李欢(1985-),女,湖南湘潭人,博士研究生,从事矿业经济和企业管理研究工作。
  • 基金资助:
    国家自然科学基金青年基金项目“基于人工智能的矿山技术经济指标动态优化”(51404305)

Cleaner Production Assessments of Zinc Smelting Enterprise Based on Game Theory and Fuzzy Comprehensive Evaluation

Huan LI1(),Junhua MING1,Xiaofeng SHI2   

  1. 1 School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan, China
    2 Hubei Shashi Middle School,Jingzhou 434000,Hubei, China
  • Received:2018-07-18 Revised:2018-09-29 Online:2018-10-20 Published:2018-10-31

摘要:

为了有效推进清洁生产,促进锌冶炼企业的可持续发展,在冶炼工艺和数学方法的基础之上,提出了基于博弈论和模糊综合评判的评价模型。首先利用层次分析法和熵权法分别计算得到权重值,再利用博弈论的思想对其进行最优化处理后确定最终权重,最后利用模糊综合评价方法得到评价结果。应用实例分析结果表明:该企业的清洁生产等级处于第二等级,具有较大的清洁生产潜力,该指标体系中的6个一级指标中,有2个指标处于第三等级,3个指标处于第二等级,1个指标处于第一等级。说明基于博弈论和模糊综合评判的评价模型在锌冶炼企业的清洁生产评价方面具有很强的适用性,能够有效促进清洁生产的发展。

关键词: 锌冶炼企业, 清洁生产评价, 博弈论, 组合赋权, 模糊综合评价

Abstract:

In order to promote cleaner production and promote the sustainable development of zinc smelting enterprises,the evaluation model based on game theory and fuzzy comprehensive evaluation was put forward on the basis of smelting process and mathematical method.Firstly,the weight values were calculated by the analytic hierarchy process and entropy weight method.Secondly, the final weight was determined by the game theory. Finally,the fuzzy comprehensive evaluation method was used to get the evaluation results.The results of the application examples showed that the cleaner production level of the enterprise is in the second level,which has great potential for cleaner production,among the six first level indicators in the index system,two indicators are in third levels,three indicators are in second grades, and one indicator is in the first level.And the evaluation model based on game theory and fuzzy comprehensive evaluation had a strong applicability in the cleaner production evaluation of zinc smelting enterprises and it would effectively promote the development of cleaner production.

Key words: zinc smelting enterprise, cleaner production assessments, game theory, combined weight, fuzzy comprehensive evaluation

中图分类号: 

  • TQ450

图1

博弈论—模糊数学综合评估流程图"

图2

锌冶炼行业清洁生产评价指标体系"

表1

目标层判断矩阵及权重"

A B 1 B 2 B 3 B 4 B 5 B 6 W i
B 1 1 2 2 6 2 3 0.3231
B 2 1/2 1 1 4 2 2 0.1996
B 3 1/2 1 1 4 2 2 0.1996
B 4 1/6 1/4 1/4 1 1/3 1/2 0.0484
B 5 1/2 1/2 1/2 3 1 2 0.1364
B 6 1/3 1/2 1/2 2 1/2 1 0.0930

表2

生产工艺及装置指标判断矩阵及权重"

B 1 B 11 B 12 B 13 B 14 W i
B 11 1 1 2 2 0.3334
B 12 1 1 2 2 0.3334
B 13 1/2 1/2 1 1 0.1666
B 14 1/2 1/2 1 1 0.1666

表3

资源能源消耗指标判断矩阵及权重"

B 2 B 21 B 22 B 23 B 24 W i
B 21 1 1 1/2 1/2 0.1666
B 22 1 1 1/2 1/2 0.1666
B 23 2 2 1 1 0.3334
B 24 2 2 1 1 0.3334

表4

资源综合利用指标判断矩阵及权重"

B 3 B 31 B 32 B 33 B 34 B 35 W i
B 31 1 3 2 3 1 0.3133
B 32 1/3 1 1/2 1 1/3 0.0986
B 33 1/2 2 1 2 1/2 0.1763
B 34 1/3 1 1/2 1 1/3 0.0986
B 35 1 3 2 3 1 0.3133

表5

产品特征指标判断矩阵及权重"

B 4 B 41 B 42 W i
B 41 1 1 0.5000
B 42 1 1 0.5000

表6

污染物产生与排放指标判断矩阵与权重"

B 5 B 51 B 52 B 53 B 54 W i
B 51 1 4 4 1 0.4000
B 52 1/4 1 1 1/4 0.1000
B 53 1/4 1 1 1/4 0.1000
B 54 1 4 4 1 0.4000

表7

清洁生产管理指标判断矩阵及权重"

B 6 B 61 B 62 B 63 B 64 B 65 B 66 B 67 B 68 B 69 W i
B 61 1 1/2 1 1 1 1 1 1 1 0.1000
B 62 2 1 2 2 2 2 2 2 2 0.2000
B 63 1 1/2 1 1 1 1 1 1 1 0.1000
B 64 1 1/2 1 1 1 1 1 1 1 0.1000
B 65 1 1/2 1 1 1 1 1 1 1 0.1000
B 66 1 1/2 1 1 1 1 1 1 1 0.1000
B 67 1 1/2 1 1 1 1 1 1 1 0.1000
B 68 1 1/2 1 1 1 1 1 1 1 0.1000
B 69 1 1/2 1 1 1 1 1 1 1 0.1000

表8

锌冶炼行业清洁生产潜力评估指标权重值"

序号 一级指标 一级指标权重 二级指标 二级指标权重
1 生产工艺与装置要求 0.3231 冶炼工艺 0.3334
2 阴极板 0.3334
3 物流运输系统 0.1666
4 自动控制系统 0.1666
5 资源能源消耗指标 0.1996 电锌电流效率 0.1666
6 单位产品新鲜水用量 0.1666
7 电锌直流电耗 0.3334
8 电锌单位产品综合能耗(折标煤) 0.3334
9 资源综合利用指标 0.1996 工业用水循环利用率 0.3133
10 镉利用率 0.0986
11 总硫利用率 0.1763
12 有价元素利用率 0.0986
13 锌总回收率 0.3133
14 产品指标 0.0484 安全性 0.5000
15 锌产品成分限制要求 0.5000
16 污染物产生与排放指标 0.1364 废水产生量 0.4000
17 排空烟尘固体物含量 0.1000
18 允许废渣排放量 0.1000
19 单位产品二氧化硫产生量 0.4000
20 清洁生产管理指标 0.0930 环境法律法规标准 0.1000
21 产业政策执行情况 0.2000
22 环境应急预案 0.1000
23 组织机构 0.1000
24 危险化学品管理 0.1000
25 环境审核 0.1000
26 生产过程管理 0.1000
27 污染物排放监测 0.1000
28 环境管理制度 0.1000

表9

定性指标专家打分表"

定性指标编号 专家编号 平均值
1 2 3 4 5 6 7 8 9 10
B 11 80 100 80 100 90 100 90 100 100 100 94
B 13 30 30 30 30 30 30 30 30 30 30 30
B 14 30 30 30 30 30 30 30 30 30 30 30
B 41 100 90 80 85 95 100 100 100 80 90 92
B 61 100 100 100 100 100 100 100 100 100 100 100
B 62 80 70 75 60 85 70 70 60 65 60 70.5
B 63 20 30 30 15 30 30 30 30 15 20 25
B 64 70 80 65 85 70 60 65 75 80 60 71
B 65 60 60 60 70 65 50 50 50 55 60 58
B 66 50 60 70 70 60 60 60 60 60 60 61
B 67 30 30 20 10 10 30 20 20 20 30 22
B 68 0 0 10 5 10 5 10 5 5 0 5
B 69 0 0 0 5 0 5 0 0 5 0 1.5

表10

评价指标数据表"

定量指标编号 单位 国际先进水平 国内先进水平 国内一般水平 企业实际水平
B 11 - 100 70 30 94
B 12 m 2 3.2 2.6 2.0 2.2
B 13 - 100 70 30 30
B 14 - 100 70 30 30
B 21 - 90% 89% 88% 90%
B 22 t/tZn 10 15 20 31.33
B 23 kW*h/t 350 400 450 380
B 24 kgce/t 700 800 900 780
B 31 - 95% 85% 75% 90%
B 32 - 90% 80% 70% 76%
B 33 - 98% 97% 96% 0
B 34 - 80% 75% 70% 73%
B 35 - 97% 96.5% 96% 96.45%
B 41 - 100 70 30 92
B 42 - 99.995% 99.99% 99.95% 99.998%
B 51 t/t 2.5 5 7.5 4
B 52 mg/ m 3 50 100 150 5.3
B 53 t/tZn 0.5 0.7 1.0 1.2
B 54 kg/t 8 10 20 15
B 61 - 100 70 30 100
B 62 - 100 70 30 70.5
B 63 - 100 70 30 25
B 64 - 100 70 30 71
B 65 - 100 70 30 58
B 66 - 100 70 30 61
B 67 - 100 70 30 22
B 68 - 100 70 30 5
B 69 - 100 70 30 1.5

表11

信息熵( H i )、差异系数( g i )和熵权( W i )计算数据 "

指标编号 H i g i W i 指标编号 H i g i W i
B 11 0.9572 0.0428 0.1542 B 42 0.9771 0.0229 0.1477
B 12 0.9545 0.0455 0.1765 B 51 0.9791 0.0209 0.1613
B 13 0.9476 0.0524 0.1795 B 52 0.9773 0.0227 0.1657
B 14 0.9476 0.0524 0.1795 B 53 0.9759 0.0241 0.2143
B 21 0.9750 0.0250 0.1538 B 54 0.9767 0.0233 0.1600
B 22 0.9790 0.0210 0.2402 B 61 0.9909 0.0091 0.1522
B 23 0.9791 0.0209 0.1613 B 62 0.9899 0.0101 0.1626
B 24 0.9796 0.0204 0.1639 B 63 0.9910 0.0090 0.1882
B 31 0.9787 0.0213 0.1600 B 64 0.9898 0.0102 0.1624
B 32 0.9776 0.0224 0.1724 B 65 0.9899 0.0101 0.1675
B 33 0.9754 0.0246 0.2840 B 66 0.9893 0.0107 0.1663
B 34 0.9776 0.0224 0.1724 B 67 0.9906 0.0094 0.1928
B 35 0.9793 0.0207 0.1681 B 68 0.9908 0.0092 0.2124
B 41 0.9776 0.0224 0.1549 B 69 0.9892 0.0108 0.2154

表12

锌冶炼行业清洁生产潜力评估指标权重值和清洁生产评价指标权重值"

序号 一级指标 一级指标权重 二级指标 二级指标权重
1 生产工艺与装置要求 0.3132/0.3203 冶炼工艺 0.2216/0.3033
2 阴极板 0.2356/0.3071
3 物流运输系统 0.2714/0.1948
4 自动控制系统 0.2714/0.1948
5 资源能源消耗指标 0.1414/0.1835 电锌电流效率 0.2863/0.1922
6 单位产品新鲜水用量 0.2406/0.1825
7 电锌直流电耗 0.2393/0.3132
8 电锌单位产品综合能耗(折标煤) 0.2337/0.3120
9 资源综合利用指标 0.1807/0.1944 工业用水循环利用率 0.1911/0.2818
10 镉利用率 0.2014/0.1250
11 总硫利用率 0.2206/0.1877
12 有价元素利用率 0.2014/0.1250
13 锌总回收率 0.1855/0.2804
14 产品指标 0.0735/0.0553 安全性 0.4939/0.4978
15 锌产品成分限制要求 0.5061/0.5022
16 污染物产生与排放指标 0.1475/0.1394 废水产生量 0.2295/0.3505
17 排空烟尘固体物含量 0.2493/0.1434
18 允许废渣排放量 0.2652/0.1479
19 单位产品二氧化硫产生量 0.2560/0.3582
20 清洁生产管理指标 0.1437/0.1070 环境法律法规标准 0.1027/0.1011
21 产业政策执行情况 0.1140/0.1682
22 环境应急预案 0.1016/0.1006
23 组织机构 0.1151/0.1055
24 危险化学品管理 0.1140/0.1052
25 环境审核 0.1208/0.1078
26 生产过程管理 0.1061/0.1021
27 污染物排放监测 0.1038/0.1014
28 环境管理制度 0.1219/0.1081
1 李宝磊 , 张正洁 , 侯海盟 ,等. 某锌冶炼企业含汞废物污染特征及环境风险分析 [C]// 第六届重金属污染防治及风险评价研讨会.厦门:中国环境科学学会 , 2016 ,
Li Baolei , Zhang Zhengjie , Hou Haimeng ,et al. Pollution characteristics and risk analysis of mercury containing waste in a zinc smelting industry [C]// Sixth annual Symposium on Prevention and Risk Assessment of Heavy Metal Pollution.Xiamen:Chinese Society for Environmental Sciences , 2016
2 栾景丽 , 姜永利 , 刘维维 ,等. 铅锌冶炼厂土壤重金属主要污染元素分析 [C]// 2015年中国环境科学学会学术年会.深圳:中国环境科学学会 , 2015 ,
Luan Jingli , Jiang Yongli , Liu Weiwei ,et al. Analysis on main pollution elements of soil heavy metals in Pb-Zn smelting plant [C]// 2015 Annual Conference of China Environmental Science Society.Shenzhen:Chinese Society for Environmental Sciences , 2015 ,
3 张璐鑫 , 于宏兵 , 蔡梅 , 等 . 中国清洁生产 [J]. 生态经济 , 2012 , 66 ( 8 ): 46 - 48 .
Zhang Luxin , Yu Hongbing , Cai Mei , et al . Cleaner Production in China [J]. Ecological-Economy , 2012 , 66 ( 8 ): 46 - 48 .
4 张璐鑫 , 于宏兵 . 中小微型工业企业清洁生产:趋势·挑战·对策 [J]. 未来与发展 , 2012 , 35 ( 9 ): 101 - 104 .
Zhang Luxin , Yu Hongbing . Cleaner production in small and medium-sized industrial enterprises:Trends,Challengesand,countermeasures [J]. Future and Development , 2012 , 35 ( 9 ): 101 - 104 .
5 吴珉 . 我国工业清洁生产发展现状与对策研究 [J]. 低碳世界 , 2017 ( 1 ): 4 .
Wu Min . Current situation and countermeasures of industrial cleaner production in China [J]. Low Carbon World , 2017 ( 1 ): 4 .
6 Ishizaka A , Balkenborg D , Kaplan T. Influence of aggregation and measurement scale on ranking a compromise alternative in AHP [J]. Journal of the Operational Research Society , 2011 , 62 ( 4 ): 700 - 710 .
7 Srdjevic B , Medeiros Y D P . Fuzzy AHP assessment of water management plans [J]. Water Resources Management , 2008 , 22 ( 7 ): 877 - 894 .
8 尹鹏 , 杨仁树 , 丁日佳 , 等 . 基于熵权法的房地产项目建筑质量评价 [J]. 技术经济与管理研究 , 2013 ( 3 ): 3 - 7 .
Yin Peng , Yang Renshu , Ding Rijia , et al . Evaluation of real estate project construction quality based on entropy method [J]. Technoeconomics&Management Research , 2013 ( 3 ): 3 - 7 .
9 罗来正 , 肖勇 , 王宝瑞 , 等 . 熵值法在涂层老化指标权重确定中的应用 [J]. 装备环境工程 , 2017 , 14 ( 7 ): 70 - 73 .
Luo Laizheng , Xiao Yong , Wang Baorui , et al . Application of entropy method in weight determiningof coating aging index [J]. Equipment Environmental Engineering , 2017 , 14 ( 7 ): 70 - 73 .
10 王俭东 . 基于AHP-熵权法的光伏发电企业风险模糊综合评价 [D]. 哈尔滨 : 哈尔滨工业大学 , 2017 .
Wang Jiandong . Research on Fuzzy Comprehensive Risk Evaluation for PVPower Enterprises Based on AHP-entropy Weight Method [D]. Harbin : Harbin Institute of Technology , 2017 .
11 刘大海 , 宫伟 , 邢文秀 , 等 . 基于AHP-熵权法的海岛海岸带脆弱性评价指标权重综合确定方法 [J]. 海洋环境科学 , 2015 , 34 ( 3 ): 462 - 467 .
Liu Dahai , Gong Wei , Xing Wenxiu , et al . Comprehensive method for determining the weights of vulnerability assessment indexes on islands and the coastal zone based on the AHP weight method and entropy weight method [J]. Marine Environmental Science , 2015 , 34 ( 3 ): 462 - 467 .
12 陈毅 , 陈建宏 . 基于博弈论与相对熵TOPSIS的采矿方法优选 [J]. 黄金科学技术 , 2017 , 25 ( 6 ): 75 - 82 .
Chen Yi , Chen Jianhong . Mining method optimization based on game theory and relative entropy TOPSIS [J]. Gold Science and Technology , 2017 , 25 ( 6 ): 75 - 82 .
13 Wang D , Yao S. Cleaner production evaluation method-fuzzy math method[Z].Berlin,Heidelberg:Springer,2010:78,463-470.
14 周彩英 . 基于AHP和模糊综合评判的档案信息利用服务评价 [J]. 档案学通讯 , 2011 ( 3 ): 88 - 91 .
Zhou Caiying . Evaluation of archival information utilization service based on AHP and fuzzy comprehensive evaluation [J]. Archives Science Bulletin , 2011 ( 3 ): 88 - 91 .
15 杨晓艳 , 鲁红英 .基于模糊综合评判的城市环境空气质量评价[J].中国人口·资源与环境,2014,24(增2):143-146.
Yang Xiaoyan , Lu Hongying .Evaluating ambient air quality of Beijing by fuzzy comprehensive assessment method[J].China Population Resources and Environment,2014,24(Supp.2):143-146.
16 徐征捷 , 张友鹏 , 苏宏升 . 基于云模型的模糊综合评判法在风险评估中的应用 [J]. 安全与环境学报 , 2014 , 14 ( 2 ): 69 - 72 .
Xu Zhengjie , Zhang Youpeng , Su Hongsheng . Application of risk assessment on fuzzy comprehensive evaluation method based on the cloud model [J]. Journal of Safety and Environment , 2014 , 14 ( 2 ): 69 - 72 .
17 Xian S. A new fuzzy comprehensive evaluation model based on the support vector machine [J]. Fuzzy Information and Engineering , 2010 , 2 ( 1 ): 75 - 86 .
18 杨苏 . 基于模糊数学的清洁生产审核生命周期评价 [D]. 长沙 : 中南大学 , 2013 .
Yang Su . Life Cycle Assessment of Cleaner Production Audit Based on Fuzzy Mathematics [D]. Changsha : Central South University , 2013 .
19 戈海猛 . 我国水泥行业清洁生产潜力分析与研究 [D]. 大连 : 大连理工大学 , 2013 .
Ge Haimeng . Analysis and Research on Cleaner Production Potential of Cement Industry in China [D]. Dalian : Dalian University of Technology , 2013 .
20 钱志东 . 红土镍矿冶炼行业(RKEF工艺)清洁生产评价指标体系构建及实例研究 [D]. 福州 : 福建师范大学 , 2014 .
Qian Zhidong . Construction and Case Study on the Evaluation Index System of Clean Production of Laterite Nickel Ore Smelting Industry (RKEF Process) [D]. Fuzhou : Fujian Normal University , 2014 .
21 王丽丽 . 模糊数学法结合层次分析法用于清洁生产潜力评估研究 [D]. 重庆 : 重庆大学 , 2010 .
Wang Lili . Study on the Evaluation of the Potential of Cleaner Production by Fuzzy Mathematics and AHP [D]. Chongqing : Chongqing University , 2010 .
22 贾冬梅 . 造纸企业清洁生产实践研究 [D]. 大连 : 大连理工大学 , 2009 .
Jia Dongmei . Research on Cleaner Production Practice of Papermaking Enterprise [D]. Dalian : Dalian University of Technology , 2009 .
[1] 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108.
[2] 杨玮, 邓博, 龙涛, 邓莎, 薛梦鸽, 方楠. 基于效果—效率的金矿绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(6): 919-929.
[3] 杨玮, 薛梦鸽, 龙涛, 邓莎, 邓博, 方楠. 基于DPSIR模型的黄金行业绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(4): 635-645.
[4] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[5] 温廷新,苏焕博. 基于MICE_RF的组合赋权—极限随机树岩爆预测模型[J]. 黄金科学技术, 2022, 30(3): 392-403.
[6] 邓龙鑫, 陈建宏. 基于博弈论的主客观组合权重TOPSIS采矿方法优选[J]. 黄金科学技术, 2022, 30(2): 282-290.
[7] 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919.
[8] 李彤彤, 王玺, 刘焕新, 侯奎奎, 李夕兵. 基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J]. 黄金科学技术, 2020, 28(4): 565-574.
[9] 宋品芳, 李孜军, 李蓉蓉, 赵淑琪, 徐宇. 基于熵权模糊法的高海拔矿井风机性能影响因素分析[J]. 黄金科学技术, 2020, 28(3): 457-464.
[10] 马宁,胡乃联,李国清,郭对明,侯杰. 基于模糊层次分析法的高原矿井人机功效评价[J]. 黄金科学技术, 2019, 27(6): 871-878.
[11] 赵国彦,吴攀,朱幸福,赵源,李洋,邱菊. 基于灰色关联分析的三山岛金矿绿色开采技术优先级评价[J]. 黄金科学技术, 2019, 27(6): 835-843.
[12] 黄仁东,刘赞赞,闫泽正. 基于有限云模型的深基坑安全性研究[J]. 黄金科学技术, 2019, 27(1): 72-79.
[13] 陈毅,陈建宏*. 基于博弈论与相对熵TOPSIS的采矿方法优选[J]. 黄金科学技术, 2017, 25(6): 75-82.
[14] 周海林,杨珊,陈建宏*. 黄金矿山清洁生产评价指标体系研究与应用[J]. 黄金科学技术, 2017, 25(5): 93-100.
[15] 袁晓,王李管*,刘晓明,彭平安. 基于改进未确知测度理论的矿床开采方式优选[J]. 黄金科学技术, 2015, 23(5): 72-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!