img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (5): 596-604.doi: 10.11872/j.issn.1005-2518.2018.05.596

• • 上一篇    下一篇

海外矿业投资环境风险评价研究

郑明贵1,2,胡志亮1   

  1. 1 江西理工大学矿业贸易与投资研究中心,江西 赣州 341000
    2 中国科学技术大学管理学院,安徽 合肥 230026
  • 收稿日期:2018-04-29 修回日期:2018-08-18 出版日期:2018-10-20 发布日期:2018-10-31
  • 作者简介:郑明贵(1978-),男,安徽颍上人,教授,从事资源经济研究工作。mgz268@sina.com|胡志亮(1994-),男,江西南昌人,硕士研究生,从事资源经济研究工作。1253095153@qq.com
  • 基金资助:
    国家社会科学基金项目“海外矿业投资经营管理风险评估与预警系统研究”(12CGL008);江西省社会科学规划项目“考虑环境成本的稀土项目投资决策理论、方法与标准研究”(17GL11);和江西理工大学清江青年英才支持计划项目“一带一路沿线国家矿产资源开发利用风险评价技术研究”(16QJYC012)

Study on Environmental Risk Evaluation of Overseas Mining Investment

Minggui ZHENG1,2,Zhiliang HU1   

  1. 1 Research Center of Mining Trade & Investment,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
    2 The School of Management,University of Science and Technology of China,Hefei 230026,Anhui,China
  • Received:2018-04-29 Revised:2018-08-18 Online:2018-10-20 Published:2018-10-31

摘要:

海外矿业投资环境存在较大的不确定性,基于现有文献、专家经验和世界银行等数据,对海外矿业投资环境进行了风险因素识别,构建了以政治政策、经济金融、社会文化和基础设施为一级指标的风险评价指标体系。利用德尔菲法确定指标权重,根据世界银行等发布的数据以及公认的等级划分规则对评价指标进行了分级,引入变权原理建立了激励型变权评价模型,并选取12个国家进行模型应用。评价结果显示:矿业投资环境风险较低的国家有加拿大、美国、新西兰和罗马尼亚,为矿业投资首选区;风险一般的国家有菲律宾、南非、澳大利亚和墨西哥,为矿业投资次选区;风险较高的国家有俄罗斯、哈萨克斯坦、肯尼亚和巴西,为矿业投资慎选区。同时,应关注各个国家投资环境中的极端指标可能给项目运营带来的影响。最后提出了相关建议,以帮助矿山企业降低投资风险,为政府部门制定海外矿业投资政策及实施分类管理提供决策依据。

关键词: 风险因素, 海外投资, 矿业投资环境, 德尔菲法, 风险评价, 变权理论

Abstract:

Uncertainty always exists in the overseas mining investment environment.Based on related literatures,expert experience and the data from the World Bank,etc,risk factors of the overseas mining investment environment were identified.A risk evaluation index system was established with political policies,economy and finance,society and culture,and infrastructure facilities as four primary indexes.Delphi method was used to determine the index weights,and the secondary indexes were graded according to the data from the World Bank,etc and recognized grading rules.The principle of contingency theory was introduced to establish an evaluation model with incentive variable weights.Twelve countries were selected for applications.The evaluation results show that countries with lower mining environmental risks are Canada,the United States,New Zealand,and Romania,which are the preferred areas for mining investment;countries with general risks are Philippines,South Africa,Australia and Mexico,which are the sub-selected areas;countries with higher risks are Russia,Kazakhstan,Kenya and Brazil,which are the cautious-selected areas.Meanwhile,more attentions should be paid to the extreme indicators which may have adversely impacts on the operations of the project.Finally,some relevant suggestions were put forward,which may be helpful for the mining companies to reduce the investment risks and provide decision basis for the government to formulate overseas mining investment policies and implement classified management.

Key words: risk factors, overseas investment, mining investment environment, Delphi method, risk evaluation, variable weight theory

中图分类号: 

  • F416.1

表1

海外矿业投资环境风险评价指标体系"

一级指标 二级指标 风险因素度量及数据来源
政治政策风险I 1 政局稳定性I 11 IIS发布的《中国海外投资国家风险评级(2018)》中政府稳定性得分
政府腐败程度I 12 透明国际发布的《2017年全球腐败指数报告》
中外友好程度I 13 IIS发布的《中国海外投资国家风险评级(2018)》中对华关系排名
矿业政策I 14 弗雷泽研究所矿业公司年度调查(2017年)矿业投资政策感知指数
环保标准I 15 IIS发布的《中国海外投资国家风险评级(2018)》中环境政策得分
经济金融风险I 2 物价水平I 21/% 东道国近5年通货膨胀率的均值(世界银行)
经济增长率I 22/% 东道国近5年GDP平均增长率均值(世界银行)
汇率I 23 项目所在国汇率近10年的标准差变异系数(世界银行)
信用等级I 24 标准普尔2016年对全球各国信用评级
社会文化风险I 3 人文环境I 31 联合国开发计划署(UNDP)发布的《2016年人文发展报告》HDI
社会安全I 32 经济与和平研究所(IEP)发布的《2016全球恐怖主义指数报告》
工会罢工I 33 工会罢工发生的情况(中国商务部《对外投资合作国别(地区)指南(2017)》)
基础设施风险I 4 信息传输I 41 国际电信联盟(ITU)发布的《衡量信息社会报告(2016)》IDI
交通运输I 42 东道国公路及铁路加权覆盖率(中国商务部《对外投资合作国别(地区)指南(2017)》)

表2

评价指标的局部及全局权重"

一级指标 权重 二级指标 局部权重 全局权重
政治政策风险I 1 0.35 政局稳定性I 11 0.30 0.105
政府腐败程度I 12 0.15 0.0525
中外友好程度I 13 0.15 0.0525
矿业政策I 14 0.20 0.07
环保标准I 15 0.20 0.07
经济金融风险I 2 0.30 物价水平I 21 0.40 0.12
经济增长率I 22 0.10 0.03
汇率I 23 0.30 0.09
信用等级I 24 0.20 0.06
社会文化风险I 3 0.15 人文环境I 31 0.25 0.0375
社会安全I 32 0.40 0.06
工会罢工I 33 0.35 0.0525
基础设施风险I 4 0.20 信息传输I 41 0.35 0.07
交通运输I 42 0.65 0.13

表3

风险评价指标分级规则"

指标 1 2 3 4 5 6 7 8 9 10
I 11 [0,1.2] (1.2,2.4] (2.4,3.6] (3.6,4.8] (4.8,6] (6,7.2] (7.2,8.4] (8.4,9.6] (9.6,10.8] (10.8,12]
I 12 (90,100] (80,90] (70,80] (60,70] (50,60] (40,50] (30,40] (20,30] (10,20] [0,10]
I 13 [1,6] (6,12] (12,18] (18,24] (24,30] (30,36] (36,42] (42,48] (48,54] >54
I 14 [90,100] (80,90] (70,80] (60,70] (50,60] (40,50] (30,40] (20,30] (10,20] [0,10]
I 15 (9,10] (8,9] (7,8] (6,7] (5,6] (4,5] (3,4] (2,3] (1,2] [0,1]
I 21/% ≤3 ≤3 (3,6] (3,6] (6,9] (6,9] (9,50] (9,50] >50 >50
I 22/% >9 >9 (7,9] (7,9] (5,7] (5,7] (3,5] (3,5] ≤3 ≤3
I 23 ≤1 (1,1.5] (1.5,2] (2,2.5] (2.5,3] (3,3.5] (3.5,4] (4,4.5] (4.5,5] >5
I 24 AAA AA A BBB BB B CCC CC C D
I 31 (0.9,1] (0.8,0.9] (0.7,0.8] (0.6,0.7] (0.5,0.6] (0.4,0.5] (0.3,0.4] (0.2,0.3] (0.1,0.2] [0,0.1]
I 32 [0,1] (1,2] (2,3] (3,4] (4,5] (5,6] (6,7] (7,8] (8,9] (9,10]
I 33 较少 较少 一般 一般 较多 较多
I 41 (9,10] (8,9] (7,8] (6,7] (5,6] (4,5] (3,4] (2,3] (1,2] [0,1]
I 42 >90 (80,90] (70,80] (60,70] (50,60] (40,50] (30,40] (20,30] (10,20] [0,10]

表4

各国风险指标数据"

指标 菲律宾 哈萨克斯坦 俄罗斯 罗马尼亚 肯尼亚 南非 巴西 加拿大 墨西哥 美国 新西兰 澳大利亚
I 11 7.9 8.9 7.3 6.8 6.8 6.7 7.5 8.3 8 7.9 8.1 6.1
I 12 34 31 29 48 28 43 37 82 29 75 89 77
I 13 40 19 25 15 33 46 52 6 30 8 1 21
I 14 38.29 60.91 60.44 49.78 56.86 42.66 55.66 81.26 65.13 79.25 64.43 73.97
I 15 4 6 6 3 6 3 4 0 5 0 0 0
I 21 2.69 7.77 8.45 1.25 6.97 5.68 7.14 1.38 3.5 1.31 0.9 1.9
I 22 6.58 3.46 0.63 3.16 5.47 1.6 -0.39 1.84 2.52 2.16 2.9 2.8
I 23 0.07 22.77 5.26 0.08 1.33 0.63 0.16 0.01 0.35 0 0.01 0.02
I 24 BBB BBB- BBB- BBB- B+ BBB+ BB AAA A AA+ AA+ AAA
I 31 0.682 0.794 0.804 0.802 0.555 0.666 0.754 0.92 0.762 0.92 0.915 0.939
I 32 7.098 0.934 5.43 0 6.578 3.531 1.74 2.518 3.723 4.877 0.23 2.742
I 33 较少 较多 较多 一般 较少 较多 较少 较多
I 41 4.67 6.79 7.07 6.48 2.91 4.96 6.12 7.77 5.16 8.18 8.33 8.24
I 42 76.07 9.11 13.79 81.3 19.66 89.91 23.8 17.44 32.7 93.57 51.11 15.7

表5

各国风险指标分级值"

指标 菲律宾 哈萨克斯坦 俄罗斯 罗马尼亚 肯尼亚 南非 巴西 加拿大 墨西哥 美国 新西兰 澳大利亚
I 11 7 8 7 6 6 6 7 7 7 7 7 6
I 12 7 7 8 6 8 6 7 2 8 3 2 3
I 13 7 4 5 3 6 8 9 1 5 2 1 4
I 14 7 4 4 6 5 6 5 2 4 3 4 3
I 15 7 5 5 8 5 8 7 10 6 10 10 10
I 21 2 6 6 2 6 4 6 2 4 2 2 2
I 22 3 7 9 7 5 9 9 9 9 9 9 9
I 23 1 10 10 1 2 1 1 1 1 1 1 1
I 24 4 4 4 4 6 4 5 1 3 2 2 1
I 31 4 3 2 2 5 4 3 1 3 1 1 1
I 32 8 1 6 1 7 4 2 3 4 5 1 3
I 33 10 2 10 4 8 8 10 6 4 8 4 8
I 41 6 4 3 4 8 6 4 3 5 2 2 2
I 42 3 10 9 2 9 2 8 9 7 1 5 9

表6

各国常权评价结果"

国家 评价值 排名 风险等级
俄罗斯 6.518 1 较高
肯尼亚 6.113 2 较高
哈萨克斯坦 5.975 3 一般
巴西 5.753 4 一般
菲律宾 5.075 5 一般
南非 4.915 6 较低
墨西哥 4.840 7 较低
澳大利亚 4.515 8 较低
加拿大 4.185 9 较低
罗马尼亚 3.628 10 较低
新西兰 3.570 11 较低
美国 3.535 12 较低

表7

各国变权重计算结果"

指标 菲律宾 哈萨克斯坦 俄罗斯 罗马尼亚 肯尼亚 南非 巴西 加拿大 墨西哥 美国 新西兰 澳大利亚
I 11 0.117 0.116 0.108 0.125 0.106 0.113 0.113 0.128 0.118 0.133 0.132 0.119
I 12 0.059 0.056 0.056 0.062 0.057 0.057 0.057 0.047 0.061 0.054 0.048 0.050
I 13 0.059 0.049 0.050 0.052 0.053 0.061 0.060 0.039 0.054 0.049 0.041 0.054
I 14 0.078 0.065 0.063 0.083 0.067 0.076 0.069 0.063 0.068 0.072 0.077 0.067
I 15 0.078 0.069 0.066 0.089 0.067 0.081 0.075 0.093 0.076 0.097 0.096 0.090
I 21 0.098 0.123 0.119 0.091 0.115 0.117 0.119 0.090 0.109 0.094 0.093 0.103
I 22 0.027 0.032 0.033 0.037 0.029 0.036 0.034 0.039 0.036 0.041 0.040 0.038
I 23 0.062 0.105 0.102 0.068 0.069 0.062 0.060 0.068 0.062 0.070 0.070 0.065
I 24 0.058 0.056 0.054 0.064 0.060 0.059 0.059 0.045 0.054 0.056 0.055 0.043
I 31 0.036 0.032 0.028 0.034 0.036 0.037 0.033 0.028 0.034 0.029 0.029 0.027
I 32 0.069 0.039 0.060 0.045 0.063 0.059 0.047 0.059 0.059 0.070 0.046 0.057
I 33 0.064 0.041 0.059 0.056 0.057 0.061 0.062 0.062 0.051 0.069 0.057 0.064
I 41 0.075 0.065 0.058 0.075 0.076 0.076 0.066 0.069 0.072 0.065 0.064 0.060
I 42 0.118 0.152 0.143 0.117 0.145 0.107 0.145 0.169 0.146 0.101 0.150 0.163
V * 5.461 6.352 6.753 4.039 6.286 5.235 6.102 4.952 5.108 4.183 4.154 5.129

表8

常权与变权评价结果对比"

国家 指标评价值 指标排名 风险等级 极端指标
常权 变权 常权 变权 常权 变权
俄罗斯 6.518 6.753 1 1 较高 较高 政府腐败程度、经济增长率、汇率、工会罢工和交通运输
哈萨克斯坦 5.975 6.352 3 2 一般 较高 政局稳定性、汇率和交通运输
肯尼亚 6.113 6.286 2 3 较高 较高 政府腐败程度、工会罢工、信息传输和交通运输
巴西 5.753 6.102 4 4 一般 较高 中外友好程度、经济增长率、工会罢工和交通运输
菲律宾 5.075 5.461 5 5 一般 一般 社会安全和工会罢工
南非 4.915 5.235 6 6 较低 一般 中外友好程度、环保标准、经济增长率和工会罢工
澳大利亚 4.515 5.129 8 7 较低 一般 环保标准、经济增长率、工会罢工和交通运输
墨西哥 4.840 5.108 7 8 较低 一般 政府腐败程度和经济增长率
加拿大 4.185 4.952 9 9 较低 较低 环保标准、经济增长率和交通运输
美国 3.535 4.183 12 10 较低 较低 环保标准、经济增长率和工会罢工
新西兰 3.570 4.154 11 11 较低 较低 环保标准和经济增长率
罗马尼亚 3.628 4.039 10 12 较低 较低 环保标准
1 姜雅. 基于灰色系统理论的境外矿业投资风险研究与评价[D].北京:中国矿业大学(北京),2017.
Jiang Ya . Risk Evaluation of Overseas Mining Investment Based on Grey System Theory[D].Beijing:China University of Mining & Technology(Beijing),2017.
2 常兴国. 中国矿业走出去——历程、现状、总结、启示[M].北京:地质出版社,2015.
Chang Xingguo . China Mining Industry’s Going Out:History,Status Quo,Summary and Enlightenment[M].Beijing:Geological Publishing House,2015.
3 王文创. 我国矿业企业“走出去”模式研究[J].国家行政学院学报,2006(4):73-76.
Wang Wenchuang . Studies on “going out” pattern of China’s mineral industries[J].Journal of Chinese Academy of Governance,2006(4):73-76.
4 Cantegreil J. The audacity of the Texaco/Calasiatic awa-rd:René-Jean Dupuy and the internationalization of foreign investment law[J].European Journal of International Law,2011,22(2):441-458.
5 Allen L , Chakraborty S , Watanabe W. Foreign direct investment and regulatory remedies for banking crises:Lessons from Japan[J].Journal of International Business Studies,2011,42(7):875-893.
6 Fraser Institute . Annual survey of mining companies 2016/2017[R].Vancouver:Fraser Institute,2017.
7 Levary R , Wan K. An analytic hierarchy process based simulation model for entry mode decision regarding foreign direct investment[J].Omega,1999,27(6):661-677.
8 Jinjarak Y. Foreign direct investment and macroeconomic risk[J].Journal of Comparative Economics,2007,35(3):509-519.
9 Sarala R M . The impact of cultural differences and acculturation factors on post-acquisition conflict[J].Scandinavian Journal of Management,2010,26(1):38-56.
10 Johnson C J . Ranking countries for minerals exploration[J].Natural Resources Forum,1990,14(3):178-186.
11 吴尚昆. 中国矿业外资投资环境研究[D].长春:吉林大学,2004.
Wu Shangkun . Studies on the Foreign Capital Investment Environment of Chinese Mining Industry[D].Chang-chun:Jilin University,2004.
12 任杰. 海外矿产资源项目投资风险评估与实物期权研究[D].北京:中国地质大学(北京),2014.
Ren Jie . Research on Risk Assessment and Real Option of Overseas Mineral Resources Project Investment[D].Beijing:China University of Geosciences(Beijing),2014.
13 陈俊楠. 我国区域矿业投资环境竞争力评价研究[D].北京:中国地质大学(北京),2016.
Chen Junnan . Research on the Evaluation of Regional Mining Investment Environment Competitiveness in China[D].Beijing:China University of Geosciences(Beijing),2016.
14 邢佳韵,于汶加,张若然,等. 中国在哈萨克斯坦矿业投资区域优选评价研究[J].资源科学,2015,37(5):1076-1085.
Xing Jiayun , Yu Wenjia , Zhang Ruoran ,et al. A structural study of the appraisal index system for optimal mining regions in Kazakhstan[J].Resources Science,2015,37(5):1076-1085.
15 雷蕾. 菲律宾矿业投资环境研究——镍、铜为例[D].北京:中国地质大学(北京),2015.
Lei Lei . Study on the Philippine Mineral Investment Environment:With Nickel and Copper for Example[D].Beijing:China University of Geosciences (Beijing),2015.
16 Charnes A , Cooper W W , Lewin A Y ,et al. Sensitivity and stability analysis in DEA[J].Annals of Operations Research,1985,2(1):139-156.
17 Saaty T L ,Ö zdemir M S , Shang J S . An innovative orders-of-magnitude approach to AHP-based mutli-criteria decision making:Prioritizing divergent intangible humane acts[J].European Journal of Operational Research,2011,214(3):703-715.
18 Campbell J P , McCloy R A , Oppler S H ,et al. A Theory of Performance [M]//Schmitt N,Walter C B.Personnel Selection in Organizations.San Francisco:Jossey-Bass,1993:35-70.
19 霍再强,陆海松. 区域投资环境综合评判及其应用研究[J].中国流通经济,2008(2):62-65.
Huo Zaiqiang , Lu Haisong . Research on regional investment environment synthesis judgment and application[J].China Business and Market,2008(2):62-65.
20 张振辉,达庆利. 灰色系统理论在企业并购风险识别中的应用[J].科研管理,2003,24(6):1-5.
Zhang Zhenhui , Da Qingli . Application of grey system theory in M&A risk decision[J].Science Research Management,2003,24(6):1-5.
21 李志民. 基于敏感性分析的矿业投资决策持续优化研究[J].财政研究,2008(8):34-37.
Li Zhimin . Research on sustainable optimization of the mining investment decision based on sensitivity analysis[J].Public Finance Research,2008(8):34-37.
22 Carpenter S , Vellat M. The application of a Planned Economy Country Risk Model to the assessment of market entry into the Chinese banking sector[J].Journal of Financial Services Marketing,2009,13(4):345-356.
23 Miller K D . A framework for integrated risk management in international business[J].Journal of International Business Studies,1992,23(2):311-331.
24 Duan F , Ji Q , Liu B Y ,et al. Energy investment risk assessment for nations along China’s Belt & Road Initiative[J].Journal of Cleaner Production,2017,170(1):535-547.
25 Wang X. Model of investment risk prediction based on neural network and data mining technique for construction project[C]//International Symposium on Computational Intelligence and Design Washington ., Society, D C:IEEE Computer 2008 : 373 - 378 .
26 杨立,汤尚颖. 湘鄂西铅锌矿可持续发展的层次模糊评价研究[J].生态经济,2013(11):145-150.
Yang Li , Tang Shangying . AHP-FCE of the sustainable development on lead-zinc minerals in western Hunan and Hubei Province[J].Ecological Economy,2013(11):145-150.
27 仰炬,张朋柱. 基于粗糙集信息熵投资优序评价模型实证研究[J].经济管理,2004(14):18-22.
Ang Ju , Zhang Pengzhu . An empirical study on the investment order based on rough set information entropy[J].Economic Management,2004(14):18-22.
28 张雪梅,李春华,赵燕.VaR方法在海外矿业投资风险管理中的应用框架研究[J].中国人口·资源与环境,2014,24(增2):344-348.
Zhang Xuemei , Li Chunhua , Zhao Yan . Research on application framework of VaR method on risk management in overseas mining investment[J].China Population,Resources and Environment,2014,24(Supp.2):344-348.
29 李一文. 我国海外投资风险预警研究[J].管理世界,2016(9):178-179.
Li Yiwen . A risk early warning study on China’s overseas investment[J].Management World,2016(9):178-179.
30 Gordon T , Pease A. RT Delphi:An efficient,“round-less” almost real time Delphi method[J].Technological Forecasting and Social Change,2006,73(4):321-333.
31 汪培庄. 模糊集与随机集落影[M].北京:北京师范大学出版社,1985.
Wang Peizhuang . Fuzzy Set and Random Set Shadow[M].Beijing:Beijing Normal University Press,1985.
32 刘文奇. 均衡函数及其在变权综合中的应用[J].系统工程理论与实践,1997(4):58-64,75.
Liu Wenqi . Balanced function and its application for variable weight synthesizing[J].Systems Engineering-Theory & Practice,1997(4):58-64,75.
33 刘文奇. 变权综合中的惩罚—激励效用[J].系统工程理论与实践,1998(4):41-47.
Liu Wenqi . The penalty-incentive utility in variable weight synthesizing[J].Systems Engineering-Theory & Practice,1998(4):41-47.
34 刘文奇. 变权综合的激励策略及其解法[J].系统工程理论与实践,1998(12):40-43.
Liu Wenqi . The impulsing strategy and its algorithm of variable weight synthesizing[J].Systems Engineering-Theory & Practice,1998(12):40-43.
35 钱航,邵云飞,殷俊杰. 物联网产业联盟风险评估——基于变权理论与可拓理论的结合[J].技术经济,2015,34(6):121-127.
Qian Hang , Shao Yunfei , Yin Junjie . Assessment on risk of internet of things industry alliance:Based on variable weight theory and extenics theory[J].Technology Economics,2015,34(6):121-127.
36 钟昌宝. 一种供应链风险综合评价方法——变权可拓物元法[J].科技管理研究,2012(3):31-33,50.
Zhong Changbao . Study on a kind of comprehensive evaluation method for supply chain risk:Extensive matter element with variable weight method[J].Science and Technology Management Research,2012(3):31-33,50.
37 舒帮荣,黄琪,刘友兆,等. 基于变权的城镇用地扩展生态适宜性空间模糊评价——以江苏省太仓市为例[J].自然资源学报,2012,27(3):402-412.
Shu Bangrong , Huang Qi , Liu Youzhao ,et al. Spatial fuzzy assessment of ecological suitability for urban land expansion based on variable weights:A case study of Taicang[J].Journal of Natural Resources,2012,27(3):402-412.
[1] 郑明贵, 王馨悦, 顾东明, 张研博. “一带一路”背景下巴基斯坦矿业投资环境风险评价与预测[J]. 黄金科学技术, 2023, 31(4): 646-658.
[2] 邓红卫,张维友,虞松涛,高宇旭. 基于变权联系云的采空区稳定性二维评价模型[J]. 黄金科学技术, 2020, 28(1): 32-41.
[3] 陈建宏,覃曹原,邓东升 . 基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价[J]. 黄金科学技术, 2017, 25(1): 55-60.
[4] 李聪,陈建宏. 基于VIKOR法的铀资源海外投资项目风险评价研究[J]. 黄金科学技术, 2014, 22(6): 60-64.
[5] 周智勇,宋清华,李涛,陈建宏. 基于G1-变异系数法的矿产资源项目海外投资决策模型研究[J]. 黄金科学技术, 2014, 22(4): 78-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!