img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2018, Vol. 26 ›› Issue (6): 771-779.doi: 10.11872/j.issn.1005-2518.2018.06.771

所属专题: 专题名称

• • 上一篇    下一篇

诱导巷道的围岩松动破坏区数值研究

陈冲(),李夕兵,冯帆   

  1. 1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2017-06-14 修回日期:2017-08-30 出版日期:2018-12-31 发布日期:2019-01-24
  • 作者简介:陈冲(1989-),男,安徽宿州人,硕士研究生,从事采矿与岩石力学研究工作。
  • 基金资助:
    国家重点研发计划“深部岩体力学与开采理论”(编号:2016YFC0600706)资助

Numerical Study on Damage Zones of the Induced Roadway Surrounding Rock

Chong CHEN(),Xibing LI,Fan FENG   

  1. 1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2017-06-14 Revised:2017-08-30 Online:2018-12-31 Published:2019-01-24

摘要:

当前多数矿山已进入深部开采,而深部硬岩具有高储能、受扰动易破坏的特征,根据这些特点,在矿体中布置巷道诱导岩体破裂,为后续机械开采提供可能。以贵州开阳磷矿为工程背景,利用FLAC3D软件模拟深部巷道开挖,研究断面形状、地应力水平和侧压系数对巷道开挖的影响,从而得出岩体的破裂规律。数值模拟结果表明:巷道断面形状对围岩变形影响较大,而矩形巷道周围岩体产生的位移和塑性破坏区均最大;巷道位移和塑性破坏区随应力水平的增加而增大;围岩破坏和位移随侧压系数的增大表现出先减小后增大的趋势。在高应力水平和高侧压系数下,采用矩形断面方式开挖巷道,围岩产生的位移和塑性破坏区最大,致裂效果最好,有利于机械切割回采。

关键词: 诱导致裂, 开挖断面, 应力水平, 侧压系数, 数值模拟, 巷道开挖, 深部开采, 开阳磷矿

Abstract:

With more mines into deep mining,hard rock in high geo-stress shows high energy storage and generates fractures easily by disturbances, and also roadway excavation accelerate surrounding rock cracking or even broken,so the fracturing rock can be cutting by mechanical tools.Those characters make it possible to operate continuous mechanized mining in the hard-rock ore-body.In this paper,Guizhou Kaiyang phosphate mine is chosen as an engineering background,the simulations of the roadway excavation damaging process were conducted by FLAC3D,and the displacement and plastic damage zone of surrounding rock of three shape roadway section were studied.The results show that the damage scale of the rectangular section is maximum,as well as the displacement,and that the displacement damage zone scale of surrounding rock increase apparently with the geo-stress levels increasing.The failure and displacement of surrounding rock decrease first and then increase with the increasing of lateral pressure coefficient.In the high stress level and high lateral pressure coefficient conditions,the surrounding rock of rectangular section tunnel excavation has a greater displacement and larger plastic failure zone,and the fracturing effect are optimum.These results present a theoretical basis for the layout and the design of induced roadway and illustrate subsequent fracturing rock can be cut by mechanical tools.

Key words: induced fracture, excavation section, stress level, lateral pressure coefficient, numerical simulation, tunnel excavation, deep mining, Kaiyang phosphate mine

中图分类号: 

  • TD853

图 1

诱导巷道的布置示意图"

图2

松动圈示意图[14] "

表1

矿体物理力学参数"

参数 数值 参数 数值
弹性模量E/GPa 25 密度ρ/(kg·m-3) 2 760
泊松比ν 0.22 黏聚力c/MPa 1
摩擦角φ/( o) 30 抗拉强度σt /MPa 3

图 3

计算模型(以圆形断面为例)"

图 4

数值模型计算流程图"

图 5

不同断面巷道的位移与塑性区分布"

图6

不同应力水平下巷道的位移与塑性区分布"

图7

不同侧压系数下巷道的位移与塑性区分布"

1 古德生,李夕兵 .现代金属矿床开采科学技术[M].北京:冶金工业出版社,2006.
Gu Desheng , Li Xibing .Modern Minging Science and Technology for Metal Mineral Resources[M].Beijing:China Metallurgical Industry Press,2006.
2 Ghose A K .Technology vision 2050 for sustainable mining[J].Procedia Earth and Planetary Science,2009,1(1):2-6.
3 李夕兵 .岩石动力学基础与应用[M].北京:科学出版社,2014:495-529.
Li Xibing .Rock Dynamics:Fundamentals and Applications[M].Beijing:Science Press,2014:495-529.
4 李夕兵,姚金蕊,宫凤强 .硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报,2011,21(10):2551-2563.
Li Xibing , Yao Jinrui , Gong Fengqiang .Dynamic problems in deep exploitation of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals,2011,21(10):2551-2563.
5 Read R S .20 years of excavation response studies at AECL’s Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,2004,41(8):1251-1275.
6 Perras M A , Diederichs M S .Predicting excavation damage zone depths in brittle rocks[J].Journal of Rock Mechanics and Geotechnical Engineering,2016,8(1):60-74.
7 Diederichs M S .The 2003 Canadian geotechnical colloquium:Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling[J].Canadian Geotechnical Journal,2007,44(9):1082-1116.
8 邹红英,肖明 .地下洞室开挖松动圈评估方法研究[J].岩石力学与工程学报,2010,29(3):513-519.
Zou Hongying , Xiao Ming .Study of methodology for assessment of excavation disturbed zone of underground caverns[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(3):513-519.
9 徐坤,王志杰,孟祥磊,等 .深埋隧道围岩松动圈探测技术研究与数值模拟分析[J].岩土力学,2013,34(增2):464-470.
Xu Kun , Wang Zhijie , Meng Xianglei ,et al .Research on detection technology for deep tunnel surrounding rock loose circle and numerical simulation analysis[J].Rock and Soil Mechanics,2013,34(Supp.2):464-470.
10 孙有为 .地下洞室的几何性质对松动圈的影响[D].哈尔滨:中国地震局工程力学研究所,2006.
SunYouwei .Influence of Geometry on the Broken Zone of Underground Cavity[D].Harbin:Institute of Engineering Mechanics,China Earthquake Administration,2006.
11 李夕兵,姚金蕊,杜坤 .高地应力硬岩矿山诱导致裂非爆连续开采初探——以开阳磷矿为例[J].岩石力学与工程学报,2013,32(6):1101-1111.
Li Xibing , Yao Jinrui , Du Kun .Preliminary study for induced fracture and non-explosive continuous mining in high-geostress hard rock mine:A case study of Kaiyang phosphate mine[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1101-1111.
12 Brady B H G , Brown E T .Rock Mechanics for Underground Mining[M].Dordrecht:Kluwer Academic Publishers,2006.
13 万串串,李夕兵,马春德 .基于围岩松动圈现场测试的深部软岩巷道支护技术优化[J].矿冶工程,2012,32(1):12-16.
Wan Chuanchuan , Li Xibing , Ma Chunde ,et al .Optimization of support technology for deep soft rock roadway based on field measurement of excavation damage zone[J].Mining and Metallurgical Engineering,2012,32(1):12-16.
14 Andra S A .Evaluation of the feasibility of a geological repository in an argillaceous formation[J].Andra:Chatenay-Malabry,2005.
15 彭文斌 .FLAC3D实用教程[M].北京:机械工业出版社,2008.
Peng Wenbin .FLAC3DPractical Tutorial[M].Beijing:China Machine Press,2008.
16 李文成,马春德,李凯,等 .贵州开阳磷矿三维地应力场测量及分布规律研究[J].采矿技术,2010,10(5):31-33.
Li Wencheng , Ma Chunde , Li Kai ,et al .Three dimensional stress field measurement and distribution in Kaiyang phosphorite mine in Guizhou[J].Mining Technology,2010,10(5):31-33.
17 王文星 .岩体力学[M].长沙:中南大学出版社,2004:121-142.
Wang Wenxing .Rock Mechanics[M].Changsha:Central South University Press,2004:121-142.
[1] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[2] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[3] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[4] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[5] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[6] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[7] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[8] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[9] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[10] 杨轶男, 胡建华, 周坦, 赵风文, 王牧帆. 基于改进DCNN法的微震信号自动识别模型及应用[J]. 黄金科学技术, 2023, 31(5): 794-802.
[11] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[12] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[13] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[14] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[15] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!