img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 153-162.doi: 10.11872/j.issn.1005-2518.2019.02.153

• 矿产勘查与资源评价 •    下一篇

陕西镇安西部棋盘沟钨矿区成矿流体特征研究

阮仕琦1(),杨兴科1(),朱伟2,高云峰1,韩珂1   

  1. 1. 长安大学地球科学与资源学院,陕西 西安 710054
    2. 陕西省地质调查中心,陕西 西安 710054
  • 收稿日期:2018-07-24 修回日期:2018-11-05 出版日期:2019-04-30 发布日期:2019-04-30
  • 通讯作者: 杨兴科 E-mail:773946220@qq.com;xky61@163.com
  • 作者简介:阮仕琦(1994-),男,陕西商洛人,硕士研究生,从事矿田构造与矿产勘查研究工作。773946220@qq.com|杨兴科(1961-),男,陕西岐山人,教授,博士生导师,从事构造地质、矿田构造与成矿预测教学与研究工作。xky61@163.com
  • 基金资助:
    陕西省公益性地质工作项目“基金项目:镇安西部矿集区岩浆作用与钨钼成矿研究”(编号:0617-1711FY1808)

Study on Characteristics of Ore-forming Fluids in Qipangou Tungsten Mining Area, Western of Zhen’an, Shaanxi

Shiqi RUAN1(),Xingke YANG1(),Wei ZHU2,Yunfeng GAO1,Ke HAN1   

  1. 1. School of Earth Sciences and Resources,Chang’an University,Xi’an 710054,Shaanxi,China
    2. Shaanxi Geological Survey Center,Xi’an 710054,Shaanxi,China
  • Received:2018-07-24 Revised:2018-11-05 Online:2019-04-30 Published:2019-04-30
  • Contact: Xingke YANG E-mail:773946220@qq.com;xky61@163.com

摘要:

镇安西部棋盘沟矿区内的钨矿体主要为石英脉型钨矿,产出于矿区内近SN向断裂中,矿石中金属矿物以白钨矿为主,矿体规模大且品位高,但矿区内未见有岩浆岩体出露,因此明确其成矿流体来源是理解矿床成因的关键。为了探究成矿流体特征,分析了主成矿阶段形成的白钨矿与石英颗粒中主要发育的气液两相包裹体,结果显示包裹体均一温度介于291.4~423.7 ℃之间,热液盐度[w(NaCl)]为5.1%~7.7%,流体的密度范围为0.52~1.08 g/cm3。这表明矿区成矿流体属于中高温、低盐度流体,与典型热液钨矿流体相似,H、O同位素测定结果显示其主要来源为岩浆水,S同位素落入岩浆岩S同位素组成范围内,反映矿区钨矿来源于岩浆热液。与周边矿区似层状钨矿流体包裹体相比,棋盘沟矿区成矿流体均一温度明显较高,说明近SN向构造是成矿热液运移的主要通道,在成矿流体运移过程中,顺着该区NNE向断裂裂隙上升,形成石英脉型白钨矿。随着成矿热液温度持续降低,矿液沿层间裂隙灌入形成似层状型白钨矿。

关键词: 镇安西部, 流体包裹体, 钨矿, 稳定同位素, 成矿流体, 棋盘沟矿区, 陕西省

Abstract:

The western part of Zhen’an is an important tungsten molybdenum polymetallic metallogenic belt in Qinling Mountains, and its metallogenic geological conditions are very favorable.A number of tungsten-molybdenum deposits have been discovered in this area in recent years.At present, the study of tungsten deposits in this area mainly focuses on the geological characteristics,ore-controlling factors, mineral assemblages, resource prediction, metallogenic model and prospecting prospects.However, research about systematic fluid inclusions and isotope geochemistry is still lacking.This paper chooses Qipangou mining area in western Zhen’an as a typical mining area, mainly studies the characteristics of fluid inclusions and discusses the properties of ore-forming fluids in the mining area.The main tungsten ore bodies in Qipangou are quartz vein scheelite, which occurs in the near north-south faults of the mining area.The metallic minerals in the ore are mainly scheelite.The ore bodies are large in scale and high in grade, but no magmatic rock bodies are found in the mining area. Therefore, the key to understand the genesis of the deposit is to clarify the source of its mineralizing material. In this study, experimental samples of scheelite-bearing quartz veins in Qipangou mining area were taken, and fluid inclusions, pyrite sulfur isotopes, hydrogen and oxygen isotopes were analyzed.The experimental results show that the gas-liquid two-phase water-soluble inclusions are mainly developed in scheelite and quartz grains which formed in the main metallogenic stage of Qipangou. The homogenization temperature of inclusions is mainly between 291.4~423.7 ℃, the hydrothermal salinity is 5.1%~7.7% [w(NaCl)],and the density of fluid is between 0.52~1.08 g/cm3. The inclusion temperature data show that the ore-forming fluids in the mining area belong to medium-high temperature and low salinity fluids,which is similar to the physical and chemical conditions of fluid in Shizhuyuan super-large tungsten deposit in Nanling area. Hydrogen and oxygen isotope results show that the main source of fluids is magmatic water,and sulfur isotope test results fall into the range of sulfur isotope composition of magmatic rocks,reflecting that tungsten deposits in the mining area are derived from magmatic hydrothermal solution.Compared with the temperature measurement results of fluid inclusions in the near-east-west layered tungsten deposits in the surrounding mining areas, the homogenization temperature of ore-forming fluids in the Qipangou mining area is obviously higher.This result reflects that the near-north-south structure in the area is the main channel for the migration of ore-forming hydrothermal fluids. The migration process of ore-forming fluids first moves along the near-north-south faults, then along the north-south faults.Then the ore-forming pour into the interbedded fissures to form the lamellar scheelite, and the temperature decreases with the migration of hydrothermal fluids. The study results of ore-forming fluids shows that the Qipangou scheelite deposit is mainly hydrothermal quartz vein type, controlled by NEE-trending faults.The NEE-trending faults are important structures for tungsten mineralization in this area, and are the main channel for ore-forming hydrothermal migration, which is of great significance for indicating prospecting.

Key words: west of Zhen’an, fluid inclusions, tungsten ore, stable isotope, orefluid, Qipangou mining area, Shaanxi Province

中图分类号: 

  • P614

图1

研究区大地构造位置图(据陈衍景[7]修改)"

图2

镇安西部钨钼多金属矿集区地质简图"

图3

棋盘沟矿区地质简图(据文献[8]修改)"

图4

棋盘沟矿区K1矿体"

图5

棋盘沟矿区白钨矿矿石特征"

图6

棋盘沟矿区白钨矿流体包裹体镜下显微特征"

图7

白钨矿流体包裹体均一温度、盐度分布直方图"

表1

棋盘沟矿区白钨矿流体包裹体测温结果统计"

样品编号大小/μm气液比/%均一温度/℃冰点/℃盐度[w(NaCl)]/%密度/(g?cm-3)采样位置
BGQP-013×3~4×75~25291.4~423.7-8.5~-2.03.4~12.30.52~0.78910中段
BGQP-023×5~5×85~25323.3~383.2-6.9~-2.94.6~10.30.62~0.76910中段
BGQP-104×4~5×75~15295.4~412.5-6.6~-2.84.6~10.60.65~0.761130中段
BGQP-125×5~6×710~30356.3~397.1-7.6~-3.15.1~10.10.60~1.081130中段

表2

棋盘沟矿区H、O同位素测试组成"

样品编号采样位置岩(矿)石类型δDv-SMOW/‰δ18Ov-SMOW/‰成矿温度/℃δ18O水-SMOW/‰
TWOH-QP-11130中段含白钨矿石英脉-71.011.0374.76.35
TWOH-QP-21030中段含白钨矿石英脉-69.811.6367.76.77
TWOH-QP-3910中段含白钨矿石英脉-64.910.9364.35.98

图8

棋盘沟矿区D-18O水-SMOW关系图"

图9

棋盘沟钨矿与不同成因钨矿及不同岩石S同位素组成对比图"

表3

棋盘沟矿区S同位素组成"

样品编号采样位置岩性δ34Sv-CTD/‰
TWS-QP-11030中段黄铁矿10.0
TWS-QP-21130中段黄铁矿10.2
TWS-QP-31130中段黄铁矿8.8

图10

流体包裹体均一温度—密度关系图"

表4

胭脂坝岩体测年数据一览表"

测试对象年龄/Ma测试方法数据来源
黑云母花岗岩200±4LA-ICP-M锆石U-Pb文献[17]
黑云母花岗岩201.9±1.5LA-ICP-M锆石U-Pb文献[20]
二云母二长花岗岩208±2,209±2LA-ICP-M锆石U-Pb文献[21]
二长花岗岩210.8±5.0LA-ICP-M锆石U-Pb文献[22]
1 王明燕, 贾木欣, 肖仪武,等.中国钨矿资源现状及可持续发展对策[J].有色金属工程, 2014, 4(2):76-80.
WangMingyan,JiaMuxin,XiaoYiwu,et al.Present situation of tungsten resources in China and sustainable development strategic[J].Nonferrous Metals Engineering 2014, 4(2):76-80.
2 金平, 杜少喜, 金凯,等. 陕西省镇安西部钨钼多金属成矿规律及资源远景预测[J].中国科技成果, 2017(6):55-57.
JinPing,DuShaoxi,JinKai,et al.Tungsten-molybdenum polymetallic ore-forming rules and resource prospects in western Zhen’an, Shaanxi Province[J].China Science and Technology Achievement,2017(6):55-57.
3 杜玉娥, 纪崇科. 镇安县月河西段一带钼钨矿成矿规律和找矿潜力探讨[J]. 西部探矿工程, 2017, 29(2):132-135.
DuYu’e,JiChongke.Discussion on metallogenic regularity and prospecting potential of molybdenum-tungsten deposit in the western part of Yuehe River, Zhen’an County[J].West-China Exploration Engineering, 2017, 29(2):132-135.
4 王义忠, 王得权, 焦宏剑,等. 杨泗庙—赖板凳钼钨矿成矿模式研究[J]. 世界有色金属, 2017(17):154-157.
WangYizhong,WangDequan,JiaoHongjian,et al.Study on metallogenic model of Mo tungsten deposit[J].World Nonferrous Metals, 2017(17):154-157.
5 王洁明, 曹宏远, 董苏庆,等. 陕西镇安金盆钨矿床地质地球化学特征与矿床成因[J]. 科学技术与工程, 2017(30):1-8.
WangJieming,CaoHongyuan,DongSuqing,et al.Genetic discussion and geological and characteristics of geochemical of Jinpen tungsten deposit in Zhen’an,Shaanxi Province[J].Science Technology and Engineering,2017(30):1-8.
6 周小康, 王贵琴, 刘向伟,等. 镇安王家坪隐伏成矿岩体岩石化学特征及与华南典型钨矿成矿花岗岩对比[J]. 陕西地质, 2016, 34(2):41-46.
ZhouXiaokang,WangGuiqin,LiuXiangwei,et al.Contrast between the petrochemical characteristics of Wangjiaping concealed ore body and the typical tungsten mineralization of granite in south China[J].Geology of Shaanxi, 2016, 34(2):41-46.
7 DengX H, ChenY J, PirajnoF, et al.The geology and geochronology of the Waifangshan Mo-quartz vein cluster in eastern Qinling, China[J]. Ore Geology Reviews, 2017, 81:548-564.
8 中陕核工业集团二二四大队有限公司.棋盘沟钨矿区勘查报告[R].西安:中陕核工业集团二二四大队有限公司,2017.
China Shaanxi Nuclear Industry Group 214 Brigade.Qipangou tungsten mining area investigation report[R].Xi’an:China Shaanxi Nuclear Industry Group 214 Brigade,2017.
9 卢焕章. 流体包裹体[M]. 北京:科学出版社, 2004.
LuHuanzhang.Fluid Inclusion[M].Beijing:Science Press,2004.
10 ClaytonR N, O’NeilJ R, MayedaT K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research, 1972, 77(17):3057-3067.
11 任云生, 雷恩, 赵华雷,等. 延边杨金沟大型白钨矿矿床流体包裹体特征及成因探讨[J]. 吉林大学学报(地球科学版), 2010, 40(4):764-772.
RenYunsheng,LeiEn,ZhaoHualei,et al.Characteristics of fluid inclusions and ore genesis of Yangjingou large scheelite deposit in Yanbian Area,NE China[J].Journal of Jilin University(Earth Science Edition), 2010, 40(4):764-772.
12 石洪召, 张林奎, 林方成,等. 云南麻栗坡南秧田白钨矿床流体包裹体、稳定同位素特征及其成矿意义[J]. 沉积与特提斯地质, 2013, 33(2):95-102.
ShiHongzhao,ZhangLinkui,LinFangcheng,et al.Characteristics and significance of the fluid inclusions and stable isotopes from the Nanyangtian scheelite deposit in Malipo, Yunnan[J].Sedimentary Geology and Tethyan Geology, 2013, 33(2):95-102
13 龚庆杰, 於崇文, 张荣华. 柿竹园钨多金属矿床形成机制的物理化学分析[J]. 地学前缘, 2004, 11(4):617-625.
GongQingjie,YuChongwen,ZhangRonghua.Physical chemistry study on the ore-forming process of Shizhuyuan tungsten-polymetallic deposit[J].Earth Science Frontiers, 2004, 11(4):617-625.
14 宋学信, 张景凯. 柿竹园—野鸡尾钨锡钼铋多金属矿床流体包裹体初步研究[J]. 矿床地质, 1990,9(4):332-338.
SongXuexin ,ZhangJingkai. Study of fluid inclusions of the Shizhuyuan-Yejiwei W-Sn-Mo-Bi-polymetallic deposit in southern Hunan[J].Mineral Deposits,1990,9(4):332-338.
15 韦新亚. 江西修水莲花芯铜钼多金属矿床成矿特征及成因分析[D]. 南昌:东华理工大学, 2012.
WeiXinya.The Metallogenic Characteristics and Genetic Analysis of Lianhuaxin Copper (Molybdenum) Polymetallic Deposit, Xiushui, Jiangxi Province[D].Nanchang: East China Institute of Technology,2012.
16 刘茜. 陕西镇安钨矿床特征及成因研究[D]. 北京:中国地质大学(北京), 2013.
LiuXi.The Characteristics and Genesi’s of Zhen’an W Deposit ,Shaanxi Province,China[D].Beijing:China University of Geosciences (Beijing), 2013.
17 骆金诚, 赖绍聪, 秦江锋,等. 南秦岭晚三叠世胭脂坝岩体的地球化学特征及地质意义[J]. 地质论评, 2010, 56(6):792-800.
LuoJincheng,LaiShaocong,QinJiangfeng,et al.Geochemistry and geological significance of late Triassic Yanzhiba pluton from the Southern Qinling orogenic belt[J]. Geological Review, 2010, 56(6):792-800.
18 陈清敏,郭岐明,王强,等. 陕西南秦岭四海坪岩体锆石U-Pb年龄及地质意义[J]. 西北地质, 2017, 50(3):65-73.
ChenQingmin,GuoQiming,WangQiang,et al.Zircon U-Pb dating and geochemical characteristics of Sihaiping pluton from southern Qinling orogenic belt in Shaanxi[J]. Northwestern Geology, 2017, 50(3):65-73.
19 DaiH, WangD, WangC, et al. Re‐Os isotopic dating of a W‐Be polymetallic deposit in the Southern Qinling region, China[J]. Acta Geologica Sinica, 2018, 92(1):414-415.
20 韦龙猛. 南秦岭晚三叠世胭脂坝花岗岩的成因[D]. 合肥:中国科学技术大学, 2016.
WeiLongmeng.Petrogenesis of Late Triassic Yanzhiba Granite Pluton in South Qinling,Central China[D].Hefei:University of Science and Technology of China, 2016.
21 刘树文, 杨朋涛, 李秋根,等. 秦岭中段印支期花岗质岩浆作用与造山过程[J].吉林大学学报(地球科学版), 2011, 41(6):1928-1943.
LiuShuwen,YangPengtao,LiQiugen,et al.Indosinian granitoids and orogenic processes in the middle segment of the Qinling orogen,China[J]. Journal of Jilin University(Earth Science Edition),2011, 41(6):1928-1943
22 JiangY H, JinG D, LiaoS Y, et al. Geochemical and Sr-Nd-Hf isotopic constraints on the origin of Late Triassic granitoids from the Qinling orogen, central China: Implications for a continental arc to continent-continent collision[J]. Lithos, 2010, 117(1):183-197.
[1] 袁梓焜, 邵拥军, 刘清泉, 张毓策, 王智琳. 湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J]. 黄金科学技术, 2024, 32(4): 559-578.
[2] 苏力, 朱海军, 谷守江, 杨兴科, 赵翌辰, 孙雪平, 何虎军, 韩珂, 张玉瑜, 谭江, 谢愿龙, 张龙, 高立博. 宁夏海原西华山地区金矿床地质地球化学特征及成因分析[J]. 黄金科学技术, 2024, 32(2): 191-206.
[3] 韩珂, 杨兴科. 南秦岭镇安西部钨钼矿集区成矿物质来源研究[J]. 黄金科学技术, 2024, 32(1): 13-30.
[4] 赵荣艳, 李天恩, 张玲. 四川独狼沟金矿浮选尾矿综合回收金、钨和石英砂试验研究[J]. 黄金科学技术, 2023, 31(6): 1035-1043.
[5] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873-887.
[6] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[7] 樊忠平, 张望, 王卫. 陕西省山阳—商南金矿成矿规律及找矿预测研究[J]. 黄金科学技术, 2023, 31(4): 560-579.
[8] 刘林林,陈军,杨再风,杜丽娟,吉彦冰,郑禄林. 滇黔桂地区不同成矿温度热液金矿床磷灰石矿物化学特征:兼论卡林型金成矿流体来源特殊性[J]. 黄金科学技术, 2023, 31(2): 219-231.
[9] 李博,邹少浩,许德如,陈喜连,王雪娜,王华. 湘南新田岭矽卡岩型白钨矿床中石榴子石的成分特征及其对钨成矿作用的启示[J]. 黄金科学技术, 2023, 31(2): 232-251.
[10] 余应龙,周岳强,董玉宁,时承华. 湖南安化大溶溪白钨矿床侧伏规律研究及意义[J]. 黄金科学技术, 2023, 31(2): 252-261.
[11] 寸小妮,薛玉山,王瑜亮,刘新伟. 陕西龙头沟金矿黄铁矿标型特征及其找矿意义[J]. 黄金科学技术, 2023, 31(1): 64-77.
[12] 王华,邹少浩,陈龙,许德如,陈喜连,王雪娜,冯浩东. 赣西浒坑钨矿床成矿岩体的磷灰石和锆石微量元素特征及其对成岩成矿的指示[J]. 黄金科学技术, 2022, 30(6): 848-865.
[13] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[14] 叶光祥,黄智群,王晓军,张树标,苑栋. 基于未确知测度理论的石英脉型钨矿山采空区稳定性评价[J]. 黄金科学技术, 2021, 29(3): 433-439.
[15] 李逸凡,李洪奎,韩学林,耿科,张玉波,陈国栋. 胶东夏甸金矿床成因:流体包裹体及同位素证据[J]. 黄金科学技术, 2021, 29(2): 184-199.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!