img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (2): 232-240.doi: 10.11872/j.issn.1005-2518.2019.02.232

• 采选技术与矿山管理 • 上一篇    下一篇

动力扰动下深部出矿巷道围岩的变形特征

王春1,2,3(),王成1,熊祖强1,程露萍1,2,王怀彬1   

  1. 1. 河南理工大学能源科学与工程学院,河南 焦作 454000
    2. 中南大学资源与安全工程学院,湖南 长沙 410083
    3. 煤炭安全生产河南省协同创新中心,河南 焦作 454000
  • 收稿日期:2018-04-14 修回日期:2018-11-07 出版日期:2019-04-30 发布日期:2019-04-30
  • 作者简介:王春(1986-),男,安徽淮南人,讲师,从事岩石冲击动力学和采矿工艺方面的研究工作。wczy115728@163.com
  • 基金资助:
    河南省高校重点科研项目“地热新能源合理开采涉及的气—水—岩三态平衡机制研究”(编号:18A440014)、河南理工大学博士基金项目“高静载高温状态下深部岩石动力学特性研究”(编号:672707)、河南省重点研发与推广专项(科技攻关)项目“气液自行循环开采高温岩体地热能技术研究” (编号:192102310247)和深井瓦斯抽采与围岩控制技术国家地方联合工程实验室开放研究基金项目“高静载卸荷过程中受冲击小扰动时煤岩的破坏机理”(编号:SJF201803)

Deformation Characteristics of the Surrounding Rock in Deep Mining Roadway Under Dynamic Disturbance

Chun WANG1,2,3(),Cheng WANG1,Zuqiang XIONG1,Luping CHENG1,2,Huaibin WANG1   

  1. 1. School of Energy Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, Henan,China
    2. School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan,China
    3. The Collaborative Innovation Center of Coal Safety Production of Henan,Jiaozuo 454000,Henan,China
  • Received:2018-04-14 Revised:2018-11-07 Online:2019-04-30 Published:2019-04-30

摘要:

以冬瓜山铜矿井下900 m深处的出矿巷道作为研究对象,基于“隔一采一充一”阶段凿岩、分段崩落的回采方案,利用FLAC3D数值模拟软件研究了静动态开挖过程中出矿巷道围岩的变形特征。模拟相关岩体力学参数由三轴压缩及频繁冲击扰动试验数据折减获得,采用Mohr-Coulomb模型进行静态开挖分析,结合Strain-Softening模型进行动态扰动影响模拟分析。研究结果表明:爆破产生的扰动促使围岩变形加剧,但不会改变静态开挖时围岩变形演化的规律;开挖时巷道周边产生应力卸荷现象,且顶板出现拉应力,靠近采场巷道两帮应力离散性大,造成顶板易产生拉伸破坏,靠近采场巷道两帮易发生片帮;结合深部出矿巷道实际稳定情况,推测巷道顶板及靠近采场部位易产生破坏,需加强支护,其余部位稳定性相对较好。

关键词: 深部开采, 动力扰动, 采矿方案, 数值模拟, 出矿巷道, 变形特征

Abstract:

When deep rock mass is in a complex geological and mechanical environment, factors such as high stress and blasting disturbance usually affect the stability of surrounding rock in deep roadway directly.At present,the research analysis to deformation characteristics of surrounding rock in deep mine roadway is still inadequate,especially the actual destruction of roadway surrounding rock.So it is significant to study deformation characteristics of surrounding rock under dynamic disturbance, which can provide theoretical reference for supporting deep roadway surrounding rock.Through the investigation and analysis of engineering geological conditions of Dongguashan copper mine and occurrence conditions of No.Ⅰ orebody, the study on deformation regularity of roadway surrounding rock under static and dynamic load was conducted, and the numerical model is established according to the mining scheme.Therefore,taking the mine roadway of Dongguashan copper mine in the downhole 900 m deep as the research object,FLAC3D numerical simulation software was used to analyze the deformation characteristics of surrounding rock in the mining roadway, which based on the stopping scheme of the stage drilling block caving about “one charge one by one”.At first, the static and dynamic mechanical parameters of marble, skarn, serpentine, siltstone were measured through the indoor rock mechanics test, then the static and dynamic parameters of rock mass were obtained based on the generalized hoek-brown criterion. That is also to say, the simulated mechanical parameters of rock mass were obtained by reduced triaxial compression and frequent impact perturbation test data.After the establishment of the numerical calculation model, the Mohr-Coulomb model was used for static excavation analysis, and the dynamic disturbance impact simulation analysis was carried out with the Strain-Softening model, both of them were used to analyze the stress evolution and displacement evolution in roof and floor of roadway as well as both sides of surrounding rock.At last, the accuracy of the numerical simulation results was analyzed based on the actual failure of surrounding rock in the deep excavation of Dongguashan copper mine.The results show that the static and dynamic softening parameters of deep rock mass are obtained by reduction,based on test data of triaxial compression and frequent disturbance,which can be used as the basic parameters of numerical simulation analysis.What’s more, stress unloading occurred around the roadway, tensile stress appeared on the roof, while the stress on the floor was relatively small.The stress dispersion of the roadway side near the stope is greater than other side, and the change trend of stress isn’t obvious during dynamic disturbance.With the proceeding of excavation, the displacement increment of the roadway roof and the side roadway near the stope is larger than the side roadway deviated from the stope.At the same time, the roadway floor appears stable period, that is, the displacement does not change.Combined with the actual failure situation of surrounding rock in deep mining roadway, it can be speculated that roadway roof and the side roadway near the stope are prone to damage.As a result,the support should be strengthened and the rest parts are relatively stable.

Key words: deep mining, dynamic disturbance, mining method, numerical simulation, ore-drawing roadway, deformation characteristics

中图分类号: 

  • TU856

图1

阶段凿岩分段崩落空场嗣后充填采矿法"

图2

数值模型建模思路示意图"

表1

折减后岩体静力学参数"

岩性cd/MPaφd/(°)抗拉强度/MPa抗压强度/MPa变形模量/GPa
大理岩2.4533.660.244.918.45
矽卡岩4.9144.980.055.9213.92
蛇纹岩4.7037.020.6212.176.59
粉砂岩3.2926.942.3711.1713.85

表2

矽卡岩和蛇纹岩岩体动力学软化参数指标"

岩性冲击扰动次数n/次抗压强度/MPa变形模量/GPa泊松比cd/MPaφd/(°)τd/MPaGd/GPaγd/ε
矽卡岩022.29153.160.277.3019.8615.3560.302.55E-04
521.80127.890.277.1419.7814.9850.352.98E-04
1020.53112.500.276.7419.5614.0444.293.17E-04
1518.4983.110.276.1019.1712.5332.723.83E-04
2015.6669.860.275.2118.5310.4627.503.90E-04
2512.0264.330.273.9916.847.6325.334.01E-04
蛇纹岩014.98103.340.244.9718.6510.0341.672.41E-04
514.6981.900.244.8818.579.8233.032.97E-04
1013.6967.080.244.5818.279.1027.053.36E-04
1513.0057.000.244.3818.058.6122.983.75E-04
2010.2850.650.243.5617.026.7020.423.98E-04

图3

数值计算过程中监测点位置"

图4

顶、底板监测点应力随开挖次序的演化规律"

图5

巷道两帮监测点应力随开挖次序的演化规律"

图6

顶、底板监测点位移随开挖次序的演化规律"

图7

巷道两帮监测点位移随开挖次序的演化规律"

图8

冬瓜山铜矿深部出矿巷道围岩破坏特征"

1 温颖远,牟宗龙,易恩兵,等.动力扰动下不同硬度煤层巷道围岩响应特征研究[J].采矿与安全工程学报,2013,30(4):555-559.
WenYingyuan,MuZonglong,YiEnbing,et al.The response features of roadway surrounding rock in different hardness coal seams under dynamic disturbance[J].Journal of Mining and Safety Engineering,2013,30(4):555-559.
2 李夕兵,廖九波,赵国彦,等.动力扰动下高应力巷道围岩动态响应规律[J].科技导报,2012,30(22):48-54.
LiXibing,LiaoJiubo,ZhaoGuoyan,et al.Dynamic response of surrounding rock in highly-stressed tunnel under dynamic disturbance[J].Science and Technology Review,2012,30(22):48-54.
3 吕文玉,孟宪锐.冲击矿压及岩石巷道卸压爆破影响参数研究[J].中国矿业,2009,18(2):72-73,85.
WenyuLü,MengXianrui.Research on the impulsion pressure and influence parameters of distress blasts in rock roadway[J]. China Mining Magazine,2009,18(2):72-73,85.
4 谭海文,吴仲雄,马瑞军.岩体节理裂隙对巷道掘进爆破影响的研究与实践[J].金属矿山,2007,37(5):42-45.
TanHaiwen,WuZhongxiong,MaRuijun.Research on effect of rock mass joints and fissures on blasting in tunneling and its practice[J].Metal Mine,2007,37(5):42-45.
5 王春,唐礼忠,程露萍,等.一维静载与频繁扰动共同作用下含铜蛇纹岩动力学特性[J].振动与冲击,2016,35(9):219-226.
WangChun,TangLizhong,ChengLuping,et al. Dynamic characteristics of copper-bearing serpentine under combined action of one-dimensional static load and frequent disturbance[J]. Journal of Vibration and Shock,2016,35(9):219-226.
6 唐礼忠,王春,程露萍,等.一维静载及循环冲击共同作用下矽卡岩力学特性试验研究[J].中南大学学报(自然科学版),2015,46(10):3898-3906.
TangLizhong, WangChun, ChengLuping,et al.Experimental study of mechanical characteristics of skarn under one-dimensional coupled static and cyclic impact loads[J].Journal of Central South University (Science and Technology) ,2015,46(10):3898-3906.
7 李夕兵,周子龙,叶州元,等.岩石动静组合加载力学特性研究[J].岩石力学与工程学报,2008,27(7):1387-1395.
LiXibing,ZhouZilong,YeZhouyuan,et al.Study of rock mechanical characteristics under coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2008,27(7):1387-1395.
8 李夕兵,宫凤强,ZhaoJ,等.一维动静组合加载下岩石冲击破坏试验研究[J].岩石力学与工程学报,2010,29(2):251-260.
LiXibing,GongFengqiang,ZhaoJ,et al.Test study of impact failure of rock subjected to one-dimensional coupled static and dynamic loads[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(2):251-260.
9 闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24(16):2894-2899.
YanChangbin,XuGuoyuan,LiXibing.Stability analysis of mined-out areas influenced by blasting vibration with FLAC3D[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(16):2894-2899.
10 尚振华,唐绍辉,焦文宇,等.基于 FLAC3D模拟的大规模采空区破坏概率研究[J].岩土力学,2014,35(增2):3000-3006.
ShangZhenhua,TangShaohui,JiaoWenyu,et al.Failure probability of goaf in large-scale based on simulation of FLAC3D[J].Rock and Soil Mechanics,2014,35(Supp.2):3000-3006.
11 吴启红,唐佳,杨有莲.某矿山多层采空区群稳定性的 FLAC3D数值分析[J].矿冶工程,2011,31(6):13-20.
WuQihong,TangJia,YangYoulian.FLAC3D -based numerical analysis for stability of multilayer goafs in a mine[J].Mining and Metallurgical Engineering,2011,31(6):13-20.
12 朱万成,左宇军,尚世明,等.动态扰动触发深部巷道发生失稳破裂的数值模拟[J].岩石力学与工程学报,2007,26(5):915-921.
ZhuWancheng,ZuoYujun,ShangShiming,et al.Numerical simulation of instable failure of deep rock tunnel triggered by dynamic disturbance[J]. Chinese Journal of Rock Mechanics and Engineering,2007,26(5):915-921.
13 唐春安,李连崇,李常文,等.岩土工程稳定性分析 RFPA 强度折减法[J].岩石力学与工程学报,2006,25(8):1522-1530.
TangChun’an,LiLianchong,LiChangwen,et al.RFPA strength reduction method for stability analysis of geotechnical engineering[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(8):1522-1530.
14 龙源,冯长根,徐全军,等.爆破地震波在岩石介质中传播特性与数值计算研究[J].工程爆破,2000,6(3):1-7.
LongYuan,FengChanggen,XuQuanjun,et al.Study on propagation characteristics of blasting seismic waves in a rock medium and numerical calculation[J].Engineering Blasting,2000,6(3):1-7.
15 李占金,杨美宏,孙文诚,等.基于FLAC3D的深部大规模开采围岩稳定性分析[J].矿业研究与开发,2017,37(6):90-93.
LiZhanjin,YangMeihong,SunWencheng,et al.Stability analysis of surrounding rock under deep and large-scale mining based on FLAC3D[J].Mining Research and Development,2017,37(6):90-93.
16 林慧立,石永奎.深部构造复杂区大断面硐室群围岩稳定性模拟分析[J].煤炭学报,2011,36(10):1619-1623.
LinHuili,ShiYongkui.Simulation on stability of surrounding rock of large section chambers in deep structural complex areas[J].Journal of China Coal Society,2011,36(10):1619-1623.
17 孙红月,尚岳全,张春生.大型地下洞室围岩稳定性数值模拟分析[J].浙江大学学报(工学版),2004,38(1):70-73.
SunHongyue,ShangYuequan,ZhangChunsheng.Numerical modeling analysis for surrounding rockmass stability of large underground cavities[J].Journal of Zhejiang University(Engineering Science),2004,38(1):70-73.
18 常聚才,谢广祥.深部巷道围岩力学特征及其稳定性控制[J].煤炭学报,2009,34(7):881-886.
ChangJucai,XieGuangxiang.Mechanical characteristics and stability control of rock roadway surrounding rock in deep mine[J].Journal of China Coal Society,2009,34(7):881-886.
19 唐礼忠,高龙华,王春,等.动力扰动下含软弱夹层巷道围岩稳定性数值分析[J].采矿与安全工程学报,2016,33(1):63-69.
TangLizhong,GaoLonghua,WangChun,et al.Numerical analysis of stability of roadway surrounding rock with weak interlayer under dynamic disturbance[J].Journal of Mining and Safety Engineering,2016,33(1):63-69.
20 肖猛,丁德馨,莫勇刚.软岩巷道围岩稳定性的 FLAC3D数值模拟研究[J].矿业研究与开发,2007,27(1):73-75.
XiaoMeng,DingDexin,MoYonggang.Numerical simulation of surrounding rock stability of soft rock roadway based on FLAC3D[J].Mining Research and Development,2007,27(1):73-75.
21 孙书伟,林杭,任连伟.FLAC 3D在岩土工程中的应用[M].北京:中国水利水电出版社,2011:63-95.
SunShuwei,LinHang,RenLianwei.Application of FLAC3D in Geotechnical Engineering[M].Beijing:China Water and Power Press,2011:63-95.
22 武建力.冬瓜山铜矿频繁爆破开采下围岩变形与破坏机理研究[D].长沙:中南大学,2014:25-30.
WuJianli.Study on the Deformation and Failure Mechanism of Dongguashan Copper Mine’s Surrounding Rock Under Frequent Vibrations[D].Changsha:Central South University,2014:25-30.
[1] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[2] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[3] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[4] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[5] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[6] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[7] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[8] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[9] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[10] 杨轶男, 胡建华, 周坦, 赵风文, 王牧帆. 基于改进DCNN法的微震信号自动识别模型及应用[J]. 黄金科学技术, 2023, 31(5): 794-802.
[11] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[12] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[13] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[14] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[15] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!