img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 522-529.doi: 10.11872/j.issn.1005-2518.2019.04.522

• 采选技术与矿山管理 • 上一篇    下一篇

海底倾斜矿体开采沉陷预测研究

曹家源1,2,3(),马凤山1,2(),郭捷1,2,张国栋4,李兆平4   

  1. 1. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2. 中国科学院地球科学研究院,北京 100029
    3. 中国科学院大学,北京 100049
    4. 山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
  • 收稿日期:2018-07-31 修回日期:2019-01-03 出版日期:2019-08-31 发布日期:2019-08-19
  • 通讯作者: 马凤山 E-mail:313052383@qq.com;fsma@mail.iggcas.ac.cn
  • 作者简介:曹家源(1990-),男,山东威海人,博士研究生,从事矿山地质工程与地质灾害研究工作。313052383@qq.com
  • 基金资助:
    国家自然科学基金项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293);“金属矿山地下采动引起的竖井变形破坏机理研究”(41772341)

Study on Subsidence Prediction of Inclined Orebody Cut and Fill Mining in Seabed

Jiayuan CAO1,2,3(),Fengshan MA1,2(),Jie GUO1,2,Guodong ZHANG4,Zhaoping LI4   

  1. 1. Key Laboratory of Shale Gas and Geoengineering, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
    2. Institutions of Earth Science, Chinese Academy of Sciences, Beijing 100029, China
    3. University of Chinese Academy of Sciences, Beijing 100049, China
    4. Sanshandao Gold Mine, Shandong Gold Mining (Laizhou) Co. , Ltd. , Laizhou 261442, Shandong, China
  • Received:2018-07-31 Revised:2019-01-03 Online:2019-08-31 Published:2019-08-19
  • Contact: Fengshan MA E-mail:313052383@qq.com;fsma@mail.iggcas.ac.cn

摘要:

三山岛金矿新立矿区是我国唯一一座海底金属矿山,其对开采技术的要求较高,海下开采遇到了严重的安全问题,其中海底移动变形对采矿安全造成重大威胁。金属矿开采所引起的覆岩移动和变形是一个复杂的力学问题,掌握采空区覆岩体采动岩体移动规律和实现对覆岩沉陷的有效预测是新立矿区亟待解决的重要课题。通过对新立矿区井下55线各中段石门巷道顶板位移进行监测,得到了充填法开采倾斜金属矿体的覆岩移动和变形特征。在此基础上,提出了倾斜金属矿体充填采矿法引发覆岩内部移动和变形的悬臂梁机制。最后,通过分析顶板位移监测数据和位移曲线特征,提出了倾斜矿体充填法开采覆岩沉陷预测的轮廓函数方法。该方法由几个指数函数组成,采用该方法得到的沉陷预测曲线与实测结果十分接近,预测准确率都在85%以上。该研究结果对海底矿山的安全生产具有重要的指导意义。

关键词: 倾斜矿体, 覆岩移动, 轮廓函数法, 沉陷预测, 海底金属矿山, 矿山安全, 三山岛金矿

Abstract:

Xinli mining area of Sanshandao gold mine is the only undersea metal mines in China,its mining technology demand is higher,and also have serious security problems.At present,at home and abroad,the research on the prediction of rock mass movement and surface subsidence caused by coal mining is relatively mature,and a variety of practical subsidence models and realistic surface subsidence prediction methods are formed.However,most large and medium metal mines are mined using filling methods.The effect of repeated mining not only makes the mines face new deformation and damage of the filling body,and with the continuous expansion of the scale of the filling body,the large-scale deformation and destruction of the filling body further complicates the movement of rock mass.Finally,threatening the safe production of mines.With the popularization of filling mining methods,the law of rock mass movement and surface deformation caused by filling mining has become an urgent problem to be solved.The in-depth study of this problem can provide the basis for rock movement and surface settlement for the safe mining design of submarine mines,and provide a conceptual model for the prediction of rock mass movement and surface settlement caused by mining.So,grasping mining-induced movement rules of overburden above goaf and realizing valid predictions for overburden movement are the problems to be solved for Xinli seabed gold mine.The monitoring of the displacement of rock mass is a direct means to study the movement and deformation of rock mass caused by inclined orebody mining.The movement and deformation characteristics of inclined overburden in mining by filling method are obtained by monitoring the displacement of roof of each level of the 55 lines underground in Xinli mining area.On this basis,the paper firstly proposed a cantilever mechanism to explain movement and deformation in overburden rocks triggered by cut and fill mining method in metal mines with inclined veins.Based on the analysis of the displacement monitoring data of roof,and according to the characteristics of the displacement curve,the profile functions method is proposed to predict the subsidence of inclined overburden in mining by filling method.The method consists of several exponential functions and the subsidence curve obtained by this method is very close to the measured results.And the accuracy of the prediction is all above 85%.Therefore,the research results have important guiding significance for the safe production of submarine mines.

Key words: inclined orebody, overburden movement, profile function method, subsidence prediction, submarine metal mine, mine safety, Sanshandao gold mine

中图分类号: 

  • TD325

图1

新立矿区金矿床分布图"

图2

新立矿区东北翼浅部中段开拓分布图"

图3

31线断裂蚀变带地质剖面图"

图4

各中段监测点布设图"

图5

新立矿区井下位移监测曲线(沉降值扩大100倍)"

图6

充填开采倾斜矿体覆岩移动和变形机制"

图7

轮廓函数示意图"

表1

沉陷预测曲线参数"

参数 中段/m
-200 -240 -320 -400 -480
x 01 -18.83 -10.28 -13.18 2.124 0.857
B 1 143.6 194 186.6 523.4 347
D 1 37.27 51.73 24.85 134.3 3.941
x 02 -28.38 -9.577 -7.194 0.5013 1.698
B 2 268.7 335.1 242.5 310.2 229.5
D 2 132.6 134.6 42.97 493.3 7.9e+5
x 03 21.76 11.96 -16.07 -12.31 -19.8
B 3 499.2 527.8 303.8 239.5 57.83
D 3 14.86 16.13 164.9 66.91 30.14
x 04 - - - - -4.921
B 4 - - - - 138.1
D 4 - - - - 29.5

图8

预测沉降曲线与实测数据比较"

1 杜国栋,李晓,丁恩保 .矿体倾角对地表沉降的影响研究[J].金属矿山,2006(2):9-11.
Du Guodong , Li Xiao , Ding Enbao .Effect of dip angle of orebody on surface subsidence[J].Metal Mine,2006(2):9-11.
2 白义如,谷志孟,白世伟 .程潮铁矿东区地下采矿引起地表沉降和岩层移动初探[J].岩石力学与工程学报,2002,21(3):340-342.
Bai Yiru , Gu Zhimeng , Bai Shiwei .Primary study on ground surface subsidence and rockmass movement in east area of Chenchao iron mine due to underground mining[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(3):340-342.
3 Tomaz A , Goran T .Prediction of subsidence due to underground mining by artificial neural networks[J].Computers and Geosciences,2003,5:20-29.
4 Whittaker B N .Surface subsidence aspects of room and pillar mining[J].Mining Department Magazine,1985,37:59-67.
5 Li W X .Fuzzy models for estimation of surface ground subsidence[J].Systems Science and Mathematical Sciences,1990,3:41-52.
6 Asadi A , Shakhriar K , Goshtasbi K .Profiling function for surface subsidence prediction in mining inclined coal seams [J].Journal of Mining Science,2004,40:142-146.
7 Zhou D W , Wu K , Miao X X ,et al .Combined prediction model for mining subsidence in coal mining areas covered with thick alluvial soil layer[J].Bulletin Engineering Geology and the Environment,2018,77(1):283-304.
8 González Nicieza C , Álvarez Fernández M I , Menéndez Díaz A ,et al .The new three-dimensional subsidence influence function denoted by n-k-g [J].International Journal of Rock Mechannics and Mining Sciences,2005,42(3):372-387.
9 Sheorey P R , Loui J P , Singh K B ,et al .Ground subsidence observations and a modified influence function method for complete subsidence prediction[J].International Journal of Rock Mechanics and Mining Sciences,2000,37(5):801-818.
10 Singh R P , Yadav R N .Prediction of subsidence due to coal mining in Raniganj coalfield,West Bengal,India[J].Engineering Geology,1995,39(1/2):103-111.
11 Whittaker B N , Reddish D J .Subsidence Ocurrence,Prediction and Control[M]. Amsterdam:Elsevier,1989.
12 Deng J , Bian L .Investigation and characterization of mining subsidence in Kaiyang phosphorus mine[J].Journal of Central South University of Technology,2007,14(3):413-417 .
13 Jarosz A , Karmis M , Sroka A .Subsidence development with time experiences from longwall operations[J].Geotechnical and Geological Engineering,1990,8(3):261-273.
14 Liang Q , Wen X , He G .Study on calculation methods for surface subsidence caused by water loss of clay[J].Journal of Mineral Safety and Engineering,2007,24:105-108.
15 Díez R R , Álvarez J T .Hypothesis of the multiple subsidence trough related to very steep and vertical coal seams and its prediction through profile functions[J].Geotechnical and Geological Engineering,2000,18(4):289-311.
16 Kratzsch H .Mining Subsidence Engineering[M].Berlin Heidelberg:Springer,1983.
17 戴华阳,王金庄,蔡美峰 .岩层与地表移动的矢量预计法[J].煤炭学报,2002,27(5):473-478.
Dai Huayang , Wang Jinzhuang , Cai Meifeng .Extraction-vectorized prediction method for rock and surface movement[J].Journal of China Coal Society,2002,27(5):473-478.
18 李永树 .不规则形状地下空间开挖条件下地表沉陷预计方法研究[J].测绘工程,2001,10(3):13-16.
Li Yongshu .Method for prediction of surface subsidence in excavating underground rooms of irregular shape[J].Engineering of Surveying and Mapping,2001,10(3):13-16.
19 张华兴,仲伟林 .受断层影响的地表移动计算[J].煤炭学报,1995,20(2):163-166.
Zhang Huaxing , Zhong Weilin .Calculation of surface movement incurred by fault [J].Journal of China Coal Society,1995,20(2):163-166.
[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[3] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[4] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[5] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[6] 张钦礼, 余一波, 王道林. 龙首矿充填体悬臂结构的稳定性分析与评价[J]. 黄金科学技术, 2022, 30(2): 254-262.
[7] 杨珊,袁鸣珂,苏凯俊,徐梓桐. 基于链式变精度粗糙模糊集采场内因火灾分析[J]. 黄金科学技术, 2022, 30(1): 93-104.
[8] 张淦,陶干强,吴宇轩. 基于改流体放矿技术的放矿口尺寸试验研究[J]. 黄金科学技术, 2021, 29(3): 364-371.
[9] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[10] 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919.
[11] 王善飞, 王康, 马凤山, 卢蓉. 三山岛金矿“三下”开采工艺优化与灾害防治[J]. 黄金科学技术, 2020, 28(5): 734-742.
[12] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[13] 孙琪皓,马凤山,赵海军,郭捷,曹家源. 倾斜矿体采动与断层活化作用引起竖井变形的物理模型试验[J]. 黄金科学技术, 2020, 28(1): 51-60.
[14] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[15] 李威,马凤山,卢湘鹏,曹家源,郭捷. 基于三维地震探测的海底矿区地质结构分析[J]. 黄金科学技术, 2019, 27(4): 530-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!