img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 530-538.doi: 10.11872/j.issn.1005-2518.2019.04.530

• 采选技术与矿山管理 • 上一篇    下一篇

基于三维地震探测的海底矿区地质结构分析

李威1(),马凤山2(),卢湘鹏3,曹家源2,郭捷2   

  1. 1. 山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
    2. 中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    3. 中石化石油工程地球物理有限公司胜利分公司,山东 东营 257086
  • 收稿日期:2019-07-01 修回日期:2019-07-25 出版日期:2019-08-31 发布日期:2019-08-19
  • 通讯作者: 马凤山 E-mail:liwei@sd-gold.com;fsma@mail.iggcas.ac.cn
  • 作者简介:李威(1967-),男,山东东平人,高级工程师,从事矿山地质与生产安全工作。liwei@sd-gold.com
  • 基金资助:
    国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293);国家自然科学基金面上项目“金属矿山地下采动引起的竖井变形破坏机理研究”(41772341)

Analysis of Geological Structure of Submarine Mining Area Based on 3D Seismic Exploration

Wei LI1(),Fengshan MA2(),Xiangpeng LU3,Jiayuan CAO2,Jie GUO2   

  1. 1. Sanshandao Gold Mine,Shandong Gold Mining (Laizhou)Co. ,Ltd. ,Laizhou 261442,Shandong,China
    2. Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    3. Shengli Branch of Sinopec Petroleum Engineering Geophysics Company Limited,Dongying 257086,Shandong,China
  • Received:2019-07-01 Revised:2019-07-25 Online:2019-08-31 Published:2019-08-19
  • Contact: Fengshan MA E-mail:liwei@sd-gold.com;fsma@mail.iggcas.ac.cn

摘要:

三山岛金矿新立矿区是我国唯一一座海底金属矿山,其对开采技术要求较高,大规模海底开采过程中潜存的安全问题是矿山需解决的首要问题。其中,海底第四系底部黏土隔水层和F1断层泥是阻水的关键部位,这2处隔水层破坏后有可能会造成海水溃入,因此需要探明矿区上覆岩层的地质结构,尤其是黏土隔水层分布情况。经过探索形成了高精度三维地震勘探技术,包括灵活的采集几何,低噪声接收器条件和定量控制等,并在开展新立矿区海底地震勘探中取得了很好的效果。研究表明:在矿区地质勘查中,三维地震勘探方法可在较大深度范围内精细探测浅层与深部的地质结构形态,是一种有效且实用的技术方法;第四系在探测区稳定分布,埋深在8~39 m之间,主要表现为西部和北部偏薄,南东方向地层逐渐变深,其中第四系底部的黏土隔水层厚度变化范围为1~11 m,分布趋势与第四系基本一致,但在F1断裂附近明显变薄,厚度为2.5~5.0 m,并向北西方向逐渐变薄,隔水稳定性变差,对矿床开采具有一定的风险;下覆基岩强、中、弱3层风化带总的厚度变化范围为3~35 m,在F1断裂附近风化带明显变厚,厚度为20~35 m,是矿区主要的透水结构。高精度三维地震技术首次应用于新立矿区的地质结构探测中,为三山岛金矿海底矿区的安全开采设计提供了数据支持。

关键词: 三山岛金矿, 海底矿区, 海水溃入, 三维地震勘探, 地质结构分析

Abstract:

Sanshandao gold mine is divided into two mining areas.One is the Xishan mining area,whose orebody is buried on land,the other is the Xinli mine area.It is the only undersea metal mines in China,its mining technology demand is higher,and also have serious security problems.Among them,the clay aquifer of the Quaternary bottom and F1 fault mud are the key parts of water blocking,and the two aquifers will cause seawater to break into.Therefore,it is necessary to ascertain the geological conditions of the overlying strata in the mining area,especially the distribution of the clay aquifer.After exploration,high precision three-dimensional seismic exploration technology including flexible acquisition geometry,low noise receiver conditions and quantitative control has been formed.The foundation of 3D seismic exploration technology is 2D seismic exploration technology.3D seismic exploration is more accurate and spatially stereoscopic than the data obtained by 2D seismic exploration,but it also has higher requirements for the exploration environment.This paper briefly discusses the difficulties and countermeasures of exploration,the layout and data collection of exploration lines,the fine interpretation of the overlying layer and the hydraulic connection between the overlying strata and seawater.In the submarine seismic exploration in the Xinli mining area,good results have been achieved,as follows:In the geological exploration of mining areas,the 3D seismic exploration method can accurately detect the geological structure of shallow and deep in a large depth range,which is an effective and practical technical method.In this submarine seismic exploration in the Xinli mining area,good results have been achieved.The specific understanding is as follows:The Quaternary is stably distributed in the detection area,buried in depth of 8~39 m,which is mainly characterized by the thinness of the stratum in the west and the north and the deepening of the stratum in the southeast.Among them,the thickness of clay aquifer at the bottom of Quaternary varies in the range of 1~11 m,and the distribution trend is basically the same as Quaternary.But it thins obviously near the F1 fault,the thickness is 2.5~5.0 m,and thins gradually to the north-west direction,and the stability of aquifer becomes worse,which has a certain risk to the mining of the deposit.The total thickness of the weathering zone of the underlying bedrock in strong,medium and weak layers varies in the range of 3~35 m.The weathering zone near the F1 fault is obviously thicker,with a thickness of 20~35 m,which is the main permeable structure in the mining area.High-precision three-dimensional seismic technology was first applied in the geological structure exploration of the Xinli mining area,which provided data support for the safe mining design of the submarine mining area of the Sanshandao gold mine.

Key words: Sanshandao gold deposit, seabed mining area, seawater inrush, three-dimensional seismic exploration, geological structure analysis

中图分类号: 

  • TD807

图1

新立矿区海下开采示意图"

图2

矿区地表条件示意图"

图3

炮检点布设方案"

表1

采集参数"

参数名称 数值 参数名称 数值
观测系统 3L1S 道密度 3 256.6炮/km2
面元网格 6.25 m×12.5 m 总炮数 4 589
覆盖次数 2×36=72次 施工面积 3.55 km2
炮密度 1 402.8炮/km2

图4

地震剖面与地质分层对比"

图5

初至波速度层析反演的基本流程"

图6

速度标定示意图"

图7

合成记录和层析剖面综合标定"

图8

第四系底界面(a)和黏土层顶面(b)构造立体显示图"

图9

Crossline231基岩风化带界面解释图"

图10

强风化带底界面(a)和中风化带底界面(b)构造显示立体图"

图11

微风化带底界面(a)和上覆地层立体显示图(b)"

图12

新立矿区水文地质条件示意图"

图13

矿区上覆地层厚度与断层展布图"

1 Whitherly K , Irvine R , Morrison E .The Geotech VTEM time domain helicopter EM system[J].ASEG Extended Abstracts,2004(1):1-4.
2 Weiss C J .The fallacy of the “shallow-water problem” in marine CSEM exploration[J].Geophysics,2007,72(6):93-97.
3 范涛,程建远,王保利,等 .瞬变电磁虚拟波场成像方法及其对未爆弹探的试验研究[J].地球物理学进展,2016,31(5):2326-2332.
Fan Tao , Cheng Jianyuan , Wang Baoli ,et al .Imaging method of TEM pseudo wave-field and application of unexploded ordnance detection[J].Progress in Geophysics,2016,31(5):2326-2332.
4 何继善,鲍力知 .海洋电磁法研究的现状和进展[J].地球物理学进展,1999,14(1):7-39.
He Jishan , Bao Lizhi .The situation and progress of marine electromagnetic method research[J].Progress in Geophysics,1999,14(1):7-39.
5 姜洪亮,杨庭伟,卢超波 .地质雷达法隧道超前地质预报岩溶探测应用研究[J].工程技术研究,2018,27(11):6-9.
Jiang Hongliang , Yang Tingwei , Lu Chaobo .Application research of geology forecast by Ground Penetrating Radar on karst tunnel[J].Engineering and Technological Research,2018,27(11):6-9.
6 王甲,刘常鸿,穆海旗,等 .CSAMT法在铀矿勘查中的应用[J].矿产勘查,2018,9(1):131-136.
Wang Jia , Liu Changhong , Mu Haiqi ,et al .Application of controlled source audio-frequency magneto telluric (CSAMT)method on uranium exploration[J].Mineral Exploration,2018,9(1):131-136.
7 赵越,许枫,李貅,等 .浅海瞬变电磁全波形响应特征及探测能力分析[J].地球物理学报,2019,62(4):1526-1540.
Zhao Yue , Xu Feng , Li Xiu ,et al .Exploration capability of transmitter current waveform on shallow water TEM response [J].Chinese Journal of Geophysics,2019,62(4):1526-1540.
8 陈继福 .地震勘探法在矿井地质工作中的应用[J].山西大同大学学报(自然科学版),2018,34(4):70-72.
Chen Jifu .Application of seismic exploration method in mine geological work[J].Journal of Shanxi Datong University(Natural Science Edition),2018,34(4):70-72.
9 黄科辉,杨承志,刘君平 .EH4连续电导率成像系统在矿山探测中的应用[J].世界有色金属,2018(4):90-91,93.
Huang Kehui , Yang Chengzhi , Liu Junping .The application of EH4 continuous conductivity imaging system in mine detection[J].World Nonferrous Metals,2018(4):90-91,93.
10 陈哲 .三维地震在煤田地质物探中的应用[J].民营科技,2017(9):83.
Chen Zhe .Application of 3D earthquake in coal geology and geophysical exploration[J].Private Technology,2017(9):83.
11 刘洋,徐飞,单仑,等 .双频激电法在坦桑尼亚汉德尼金矿勘查中的应用[J].矿产勘查,2017,8(2):319-324.
Liu Yang , Xu Fei , Shan Lun ,et al .Application of the dual frequency induced polarization method in the exploration of the Handeni gold deposit in Tanzania[J].Mineral Exploration,2017,8(2):319-324.
12 刘振宽,宋宗平,宋瑞 .高精度三维地震技术及其在松辽盆地北部扶余油层砂体刻画中的应用[J].大庆石油地质与开发,2019,38(3):117-121.
Liu Zhenkuan , Song Zongping , Song Rui .High-precision 3D seismic techniques and their application in the sandbody characterization of Fuyu oil reservoirs in North Songliao Basin[J].Petroleum Geology and Oilfield Development in Daqing,2019,38(3):117-121.
13 吴琰杰 .三维地震技术在探测煤矿地质构造中的应用[J].内蒙古煤炭经济,2019(2):149-150,156.
Wu Yanjie .Application of three-dimensional seismic technology in exploring coal mine geological structure [J].Inner Mongolia Coal Economy,2019(2):149-150,156.
14 徐晓培 .高密度三维地震在超浅层煤田勘探中的应用[J].中国煤炭地质,2018,30(12):96-101,108.
Xu Xiaopei .Application of high density seismic prospecting in ultra-shallow coalfield exploration[J].Coal Geology of China,2018,30(12):96-101,108.
15 Zhao H J , Ma F S , Li G Q ,et al .Study of the hydrogeological characteristics and permeability of the Xinli Seabed Gold Mine in Laizhou Bay,Jiaodong Peninsula,China[J].Environmental Earth Sciences,2012,65(7):2003-2014.
[1] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[2] 张国栋, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿海底开采井下沉降特点及影响因素浅析[J]. 黄金科学技术, 2023, 31(5): 785-793.
[3] 何玉龙, 刘佳, 马凤山, 李光, 郭捷. 三山岛金矿地面沉降特征及原因分析[J]. 黄金科学技术, 2023, 31(4): 605-612.
[4] 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365.
[5] 赵兴东,曾楠,陈玉民,魏慧,王成龙,侯成录,杜云龙,范纯超. 三山岛金矿井下无人开采区域中深孔落矿嗣后充填连续采矿工艺设计[J]. 黄金科学技术, 2021, 29(2): 200-207.
[6] 王善飞, 王康, 马凤山, 卢蓉. 三山岛金矿“三下”开采工艺优化与灾害防治[J]. 黄金科学技术, 2020, 28(5): 734-742.
[7] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[8] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[9] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[10] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[11] 刘国伟,马凤山,郭捷,杜云龙,侯成录,李威. 多元统计分析在滨海矿区水源识别中的应用——以三山岛金矿为例[J]. 黄金科学技术, 2019, 27(2): 207-215.
[12] 马凤山,李克蓬,杜云龙,侯成录,李威,张国栋 . 三山岛金矿海底开采F1断裂防突结构可能的破坏形式分析 [J]. 黄金科学技术, 2017, 25(5): 47-56.
[13] 马凤山,郭捷,李克蓬,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与顶板岩层的变形监测研究[J]. 黄金科学技术, 2016, 24(4): 66-72.
[14] 李克蓬,马凤山,郭捷,卢蓉,张洪训,李威. 三山岛海底金矿开采充填体与围岩变形规律的数值模拟[J]. 黄金科学技术, 2016, 24(4): 73-80.
[15] 吴若菡,贾万玉,刘国栋. 三山岛金矿溜矿系统防尘措施探讨[J]. 黄金科学技术, 2015, 23(3): 73-76.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!