img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2019, Vol. 27 ›› Issue (4): 557-564.doi: 10.11872/j.issn.1005-2518.2019.04.557

• 采选技术与矿山管理 • 上一篇    下一篇

红砂岩中矿物颗粒的塑性应变分析

冯春迪(),黄仁东()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2019-02-02 修回日期:2019-04-15 出版日期:2019-08-31 发布日期:2019-08-19
  • 通讯作者: 黄仁东 E-mail:cdfeng@csu.edu.cn;hrdlb@163.com
  • 作者简介:冯春迪(1992-),男,吉林省吉林市人,硕士研究生,从事岩石力学与采矿工程研究工作。cdfeng@csu.edu.cn
  • 基金资助:
    国家重点研发计划项目“深部金属矿集约化连续采矿理论与技术”(2017YFC0602901);中南大学贵重仪器设备开放共享基金项目“多尺度下砂岩的内部结构的四维时空演化模型及其应用”(CSUZC201802)

Plastic Strain Analysis of Mineral Particles in Red Sandstone

Chundi FENG(),Rendong HUANG()   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2019-02-02 Revised:2019-04-15 Online:2019-08-31 Published:2019-08-19
  • Contact: Rendong HUANG E-mail:cdfeng@csu.edu.cn;hrdlb@163.com

摘要:

为定量研究砂岩中矿物颗粒在载荷作用下的塑性应变和应力,揭示岩石内部赤铁矿颗粒的变形行为,基于弹塑性力学理论和张量分析,采用X射线CT对砂岩三维结构进行扫描(空间分辨率为4.6 μm),分析岩石内部矿物颗粒的运移规律,并提出了岩石矿物颗粒变形梯度张量计算的方法研究其塑性应变。首先对砂岩矿物颗粒位移进行提取,并采用Non Local Means滤波算法对砂岩三维数字图像去噪;然后基于砂岩三维结构,对不同矿物组分进行分割,通过构造主轴应变的变形张量,计算砂岩矿物颗粒的变形梯度和应力、应变分量。结果表明:该滤波算法对砂岩CT图像和射束硬化现象具有显著改善效果。此外,基于X射线CT的砂岩原位测试结果显示,砂岩内部存在较复杂的变形行为和应力响应,且在断裂带和非断裂区域变形行为有着显著差异;岩石内部颗粒在Z轴方向受到压应力,而在XY平面受到拉伸应力的作用,同时矿物颗粒内部存在较大的塑性应变,且试样内部颗粒的应变和应力要远远大于试样宏观应变和应力。该方法对于揭示岩体内部结构和应力、应变状态演化过程具有重要作用。

关键词: 岩石力学, X射线CT, 矿物颗粒塑性应变, 应力分量, 应变分量, 图像滤波, 颗粒强度

Abstract:

Seldom scholars have investigated the strain and stress state of mineral particles in the rock on the microscopic scale in experiment.At the same time,due to the complex shape of the internal particles of the rock,it is necessary to find suitable research methods and high-precision research instruments.Therefore,for quantitative research on the plastic strain and stress of mineral grains in sandstone under uniaxial compression,X-ray CT was used to scan three-dimensional structure for sandstone (spatial resolution of 4.6 micrometers) to investigate the movement behavior,and put forward the method of deformation gradient tensor calculation of mineral particles to investigate the plasticity of the grains and conduct statistical analysis of the results.Firstly,the displacement of sandstone mineral particles is extracted.At the same time,non-local means filtering algorithm is used to denoise images of sandstone.Then,based on the three-dimensional structure of sandstone,different mineral components are segmented.The principle strains and stress are obtained by and the deformation gradient of sandstone mineral particles.The results show that the filtering algorithm has a significant improvement effect on the CT image of sandstone.In addition,based on the X-ray CT in-situ test results of sandstone,there are relatively complex strain behaviors and stress responses in the sandstone,and significant differences in the deformation behaviors between the fracture zone and the non-fracture zone.Rock grains in Z axis direction experience compressive stress,and in the XY plane are under the effect of tensile stress.At the same time,mineral grains exist larger plastic strain,and the internal grains test of strain and stress is greater than strain and stress the sample at macro-scale.The grain plastic strain in the fracture zone and the non-fracture zone is about 30 times and 5 times bigger than on the macroscopic strain of the sample respectively,which indicate that the deformation behavior in in the microscopic of red sandstone is significantly different from that in the macroscopic sample.This method plays an important role in revealing the internal structure of rock mass and the evolution process of stress and strain state.

Key words: rock mechanics, X-ray computed tomography, plastic strain of grains, strain components, stress components, image filter, grain strength

中图分类号: 

  • TU45

图1

X射线CT法试验装置"

图2

Non Local Means算法处理前后图像"

图3

卸载后颗粒在Z轴归一化高度上的平均应变分量"

图4

卸载后颗粒在Z轴归一化高度上的平均应力分量"

图5

0.9归一化高度处加载前(a)与加载后(b)的灰度图"

图6

卸载后颗粒应变分量εxx 的空间分布"

图7

卸载后颗粒应变分量εyy 的空间分布"

图 8

卸载后颗粒应变分量εzz 的空间分布"

图9

卸载后颗粒主应变之和的概率密度分布"

图10

应变分量的概率密度分布"

图11

应力分量的概率密度分布"

1 Holland D J , Mitchell J , Blake A ,et al .Grain sizing in porous media using Bayesian magnetic resonance[J].Physical Review Letters,2013,110(1):018001.
2 Madadi M , Saadatfar M .A finite-element study of the influence of grain contacts on the elastic properties of unconsolidated sandstones[J].International Journal of Rock Mechanics and Mining Sciences,2017,93:226-233.
3 Dvorkin J , Mavko G , Nur A .The effect of cementation on the elastic properties of granular material[J].Mechanics of Materials,1991,12(3/4):207-217.
4 Sufian A , Russell A R .Microstructural pore changes and energy dissipation in Gosford sandstone during pre-failure loading using X-ray CT[J].International Journal of Rock Mechanics and Mining Sciences,2013,57:119-131.
5 梁昌玉,吴树仁,李晓 .中低应变率范围内单轴压缩花岗岩断口细—微观特征研究[J].岩石力学与工程学报,2015,34(增1):2977-2986.
Liang Changyu , Wu Shuren , Li Xiao .Research on micro-meso characteristics of granite fracture under uniaxial compression at low and intermediate strain rates[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(Supp.1):2977-2986.
6 谢璨,李树忱,晏勤,等 .不同尺寸裂隙岩石损伤破坏特性光弹性试验研究[J].岩土工程学报,2018,40(3):568-575.
Xie Can , Li Shuchen , Yan Qin ,et al .Photoelastic experiments on failure characteristics of fractured rock with different sizes[J].Chinese Journal of Geotechnical Engineering,2018,40(3):568-575.
7 应凤祥,杨式升,张敏,等 .激光扫描共聚焦显微镜研究储层孔隙结构[J].沉积学报,2002,20(1):75-79.
Ying Fengxiang , Yang Shisheng , Zhang Min ,et al .Application of laser scanning confocal microscope to the measurement of pore texture in reservoirs[J].Acta Sedimentologica Sinica,2002,20(1):75-79.
8 孙先达,李宜强,戴琦雯 .激光扫描共聚焦显微镜在微孔隙研究中的应用[J].电子显微学报,2014(2):123-128.
Sun Xianda , Li Yiqiang , Dai Qiwen .Laser scanning confocal microscope in micropores study[J].Journal of Chinese Electron Microscopy Society,2014(2):123-128.
9 Kleinberg R L , Kenyon W E , Mitra P P .Mechanism of NMR relaxation of fluids in rock[J].Journal of Magnetic Resonance,1994,108(2):206-214.
10 Klemm A , Muller H P , Kimmich R .NMR microscopy of pore-space backbones in rock,sponge,and sand in comparison with random percolation model objects[J].Physical Review E,1997,55(4):4413-4422.
11 Hurley R C , Lind J , Pagan D C ,et al .In situ grain fracture mechanics during uniaxial compaction of granular solids[J].Journal of the Mechanics and Physics of Solids,2017,112:273-290.
12 Maruyama G , Hiraga T .Grain- to multiple-grain-scale deformation processes during diffusion creep of forsterite + diopside aggregate:1.Direct observations[J].Journal of Geophysical Research Solid Earth,2017,122(8):5912-5934.
13 Hu G C , Ma Q W , Ma S P .Construction of the three-dimensional pore throat structure of reservoir rock using CT images[J].Proceedings of SPIE,2009,7375:7375G.
14 Lifton J J , Malcolm A A , Mcbride J W .An experimental study on the influence of scatter and beam hardening in X-ray CT for dimensional metrology[J].Measurement Science and Technology,2016,27(1):015007.
15 Coupe P , Yger P , Prima S ,et al .An optimized blockwise nonlocal means denoising filter for 3-D magnetic resonance images[J].IEEE Transactions on Medical Imaging,2008,27(4):425-41.
16 Buades A , Coll B , Morel J M .A non-local algorithm for image denoising[C]//2005 IEEE Computer Vision and Pattern,June 20-25,2005,San Diego,CA,USA.New York:IEEE,2005:8624018.
17 胡晋山,丁进,康建荣,等 .Non-local Means算法在InSAR干涉图中的去噪研究[J].测绘通报,2018(11):25-29.
Hu Jinshan , Ding Jin , Kang Jianrong ,et al .Study of InSAR interferogram denoising by Non-local Means algorithm[J].Bulletin of Surveying and Mapping,2018(11):25-29.
18 Mahmoudi M , Sapiro G .Fast image and video denoising via nonlocal means of similar neighborhoods[J].IEEE Signal Processing Letters,2005,12(12):839-842.
19 Brox T , Kleinschmidt O , Cremers D .Efficient nonlocal means for denoising of textural patterns[J].IEEE Transactions on Image Processing A,2008,17(7):1083.
20 Hurley R C , Hall S A , Wright J P .Multi-scale mechanics of granular solids from grain-resolved X-ray measurements[J].Proceedings Mathematical Physical and Engineering Sciences,2017,473(2207):20170491.
21 Kalo K , Grgic D , Auvray C ,et al .Effective elastic moduli of a heterogeneous oolitic rock containing 3-D irregularly shaped pores[J].International Journal of Rock Mechanics and Mining Sciences,2017,98:20-32.
[1] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[2] 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873.
[3] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[4] 赵国彦,党成凯,刘焕新,刘洋,肖屈日,李洋,陈立强,毛文杰. 基于距离判别分析的矿山岩爆倾向性评价[J]. 黄金科学技术, 2021, 29(5): 690-697.
[5] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[6] 黄进,刘科伟,靳绍虎. 高强弹体侵彻白麻花岗岩靶体的数值模拟研究[J]. 黄金科学技术, 2021, 29(3): 411-420.
[7] 贾敬锎,黄滚,汪龙,成墙,甄利兵. 单轴压缩试验中减弱端部效应新型方法研究[J]. 黄金科学技术, 2021, 29(3): 382-391.
[8] 胡建华,董喆喆,马少维,秦亚光,徐晓,代转. 应力—渗流耦合作用下损伤岩石渗流特性[J]. 黄金科学技术, 2021, 29(3): 355-363.
[9] 邓红卫,田广林. 基于CiteSpace可视化分析下2013~2020年冻融岩石力学热点研究探析[J]. 黄金科学技术, 2021, 29(2): 275-286.
[10] 李任豪,顾合龙,李夕兵,侯奎奎,朱明德,王玺. 基于PSO-RBF神经网络模型的岩爆倾向性预测[J]. 黄金科学技术, 2020, 28(1): 134-141.
[11] 孙冰,罗瑜,谢杰辉,曾晟. N型组合节理类岩体单轴压缩破坏试验[J]. 黄金科学技术, 2019, 27(4): 548-556.
[12] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[13] 肖伟晶,陈辰,李永欣,王晓军,曹世荣,韩建文. 分级加载条件下深部灰岩蠕变试验及模型[J]. 黄金科学技术, 2017, 25(2): 76-82.
[14] 郭广军,刘明君,徐咏彬,程蔚,叶延龄,郑小礼,高海峰,赵荣欣. 山东焦家金矿床工程岩体稳定性分类研究[J]. J4, 2012, 20(4): 71-75.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!