img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (1): 105-111.doi: 10.11872/j.issn.1005-2518.2020.01.043

• 采选技术与矿山管理 • 上一篇    下一篇

基于RANSAC的地下矿山巷道边线检测算法

毕林1,2(),段长铭1,2(),任助理1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学数字矿山研究中心,湖南 长沙 410083
  • 收稿日期:2019-05-05 修回日期:2019-09-17 出版日期:2020-02-29 发布日期:2020-02-26
  • 通讯作者: 段长铭 E-mail:Mr.BiLin@163.com;Changming_duan@163.com
  • 作者简介:毕林(1975-),男,四川通江人,副教授,从事GIS 、数字矿山和铲运机无人化等方面的研究与软件开发工作。Mr.BiLin@163.com
  • 基金资助:
    国家自然科学基金项目“基于深度学习和距离场的复杂金属矿体三维建模技术研究”(41572317)

Roadway Edge Detection Algorithm Based on RANSAC in Underground Mine

Lin BI1,2(),Changming DUAN1,2(),Zhuli REN1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Center of Digital Mine Research,Central South University,Changsha 410083,Hunan,China
  • Received:2019-05-05 Revised:2019-09-17 Online:2020-02-29 Published:2020-02-26
  • Contact: Changming DUAN E-mail:Mr.BiLin@163.com;Changming_duan@163.com

摘要:

巷道边线是井下铲运机反应式导航系统中重要的感知信息。为了准确可靠地在井下环境中感知巷道边线,提出一种基于二维激光扫描信息和随机抽样一致性(RANSAC)的巷道边线检测算法。首先计算每个激光点的曲率,根据曲率阈值将激光点云划分为多个区域;然后基于RANSAC从每个区域提取直线,并根据铲运机航向角及巷道的设计标准进行筛选;最后合并筛选后的激光点云数据,使用RANSAC算法生成最终的巷道边线。基于地下矿山6种典型的巷道场景对算法效果进行验证,结果显示提取的巷道边线可靠度均达到96%以上,且算法具有很高的实时性和稳健性。

关键词: 井下铲运机, 激光雷达, 随机抽样一致性, 巷道边线检测, 反应式导航, 地下矿山

Abstract:

Because the working environment of underground LHD(load-haul-and-dump-machine)is very bad,and with the increase of mining depth in underground mines,the realization of underground unmanned LHD is of great significance for ensuring the safety and health of workers and improving the production efficiency of mining enterprises.Navigation and positioning of LHD is one of the difficulties in the research of unmanned LHD.At present,the navigation technology of underground LHD mainly includes plan-based metric navigation and reactive navigation.The reactive navigation technology has the advantages of low cost and low computation.The former reactive navigation technology mainly relies on adding beacons manually,it has the shortcomings of high cost and poor adaptability.The roadway edge is an important natural beacon perception information,which has natural advantages compared with the artificial beacon.Foreign scholars had applied it to the reactive navigation system of underground LHD and achieved good navigation effect.However,they only did the research on the detection of the roadway edge in the straight roadway,no further discussion on the detection of roadway edge in more complex underground environments.Therefore,a more applicable roadway edge detection algorithm is proposed in this paper.This method is based on two-dimensional laser scanning information and random sampling consistency (RANSAC).The flow chart of the algorithm is as follows:Firstly,the curvature of each laser point in the laser point cloud is calculated,according to the curvature threshold,the laser point cloud data are divided into several regions.RANSAC algorithm is used to extract the roadway edges from each region.Then,the roadway edges are filtered according to the heading angle of the LHD and the design criteria of the roadway.Lastly,the laser point cloud data contained in the remaining roadway edges is merged,and the final roadway edges is generated by RANSAC algorithm again.This article simulated the laser data of six underground mine roadway scenarios,and these six sets of data included typical scenes from simple to complex in underground mine.The experiment was based on MATLAB,and the experimental results were analyzed from the aspects of parallelism,proportion of interior points,fit degree with heading angle,visual display and so on.The calculated results show that the reliability of the extracted roadway edges is more than 96%,and the visual results are in line with the actual situation.This method can detect roadway edge in various scenarios of underground mines,and has high robustness,the roadway edge detection algorithm can play an important technical support role in the reactive navigation of underground LHD,and is of great significance to the realization of the unmanned underground LHD.

Key words: underground LHD, lidar, random sampling consistency, roadway edge detection, reactive navigation, underground mine

中图分类号: 

  • TD525

图1

基于RANSAC的巷道边线检测流程"

图2

激光点云数据集"

图3

巷道边线提取效果图(a)直行巷道分段;(b)转弯处分段;(c)交叉口处分段;(d)直行巷道最终结果;(e)转弯处最终结果;(f)交叉口处最终结果;(g)多交叉口巷道分段;(h)不规则交叉口处分段;(i)采场处分段;(j)多交叉口巷道最终结果;(k)不规则交叉口处最终结果;(l)采场处最终结果"

表1

巷道边线可靠度分析"

数据集序号平行度与航向角契合度内点占比总体可靠度
平均值97.4598.3496.1697.32
(a)99.4399.2394.5097.72
(b)93.0197.78100.0096.93
(c)97.7296.7495.3196.59
(d)97.3399.2294.9097.15
(e)98.7197.7992.2596.25
(f)98.5199.31100.0099.27

表2

算法解算时间"

数据集序号解算时间/ms
平均值72.51
(a)68.46
(b)53.74
(c)76.74
(d)89.47
(e)64.51
(f)82.12

表3

由不同角度分辨率数据提取的巷道边线可靠度"

数据集序号巷道边线可靠度/%
1×角度2×角度3×角度
(a)97.7297.7796.39
(b)96.9392.5093.05
(c)96.5997.3795.74
(d)97.1599.1497.11
(e)96.2595.1796.06
(f)99.2791.2393.85

表4

试验数据方差分析"

方差来源平方和自由度均方F
总和69.05517
数据角度分辨率11.72325.8621.579
不同井下场景20.19854.0401.088
随机误差37.134103.713
1 Dragt B J.Modeling and Control of an Autonomous Underground Vehicle[D].Pretoria:University of Pretoria,2006.
2 陈盟,王李管,贾明涛,等.地下铲运机自主导航研究现状及发展趋势[J].中国安全科学学报,2013,23(3):130-134.
Chen Meng,Wang Liguan,Jia Mingtao,et al.An overview of autonomous navigation techniques and development trend for underground LHD[J].China Safety Science Journal,2013,23(3):130-134.
3 姜勇.基于双变量PID控制算法的地下智能铲运机自主导航技术研究[J].机械制造,2016,54(5):19-22.
Jiang Yong.Technical study on autonomous navigation of smart underground scraper based on bivariate PID control algorithm[J].Machinery,2016,54(5):19-22.
4 杨超,陈树新,刘立,等.反应式导航在地下自主行驶铲运机中的应用[J].煤炭学报,2011,36(11):1943-1948.
Yang Chao,Chen Shuxin,Liu Li,et al.Reactive navigation for underground autonomous scraper[J].Journal of China Coal Society,2011,36(11):1943-1948.
5 Larsson J.Reactive Navigation of an Autonomous Vehicle in Underground Mines[D].Orebro:Orebro University,2007.
6 Borenstein J,Everett H R,Feng L,et al.Mobile robot positioning:Sensors and techniques[J].Journal of Robotic Systems,1997,14(4):231-249.
7 李晓梅,贾明涛,李宁,等.基于模糊控制的井下自主铲运机的安全导航[J].矿冶工程,2013,33(4):22-26.
Li Xiaomei,Jia Mingtao,Li Ning,et al.Safe navigation of underground autonomous carry scraper based on fuzzy control[J].Mining and Metallurgical Engineering,2013,33(4):22-26.
8 张绍光.基于局部重建的点云特征点提取[D].大连:大连理工大学,2013.
Zhang Shaoguang.Feature Detection on Point Clouds Via Local Reconstruction[D].Dalian:Dalian University of Technology,2013.
9 陈岚峰,杨静瑜,崔崧,等.基于MATLAB的最小二乘曲线拟合仿真研究[J].沈阳师范大学学报(自然科学版),2014,32(1):75-79.
Chen Lanfeng,Yang Jingyu,Cui Song,et al.MATLAB simulation of curve fitting based on least-squares[J].Journal of Shenyang Normal University (Natural Science Edition),2014,32(1):75-79.
10 Hough V,Paul C.Method and means for recognizing complex patterns:U.S.,1771560 [P].1960-03-25.
11 Fischler M A,Bolles R C.A paradigm for model fitting with applications to image analysis and automated cartography[J].Communications of the Association for Computing Machinery,1981,24(6):381-395.
12 Larsson J,Broxvall M,Saffiotti A.Laser based corridor detection for reactive navigation[J].Industrial Robot,2008,35(1):69-79.
13 王旭宸,卢欣辰,张恒胜,等.一种基于平行坐标系的车道线检测算法[J].电子科技大学学报,2018,47(3):362-367.
Wang Xuchen,Lu Xinchen,Zhang Hengsheng,et al.A lane detection method based on parallel coordinate system[J].Journal of University of Electronic Science and Technology of China,2018,47(3):362-367.
14 杜恩宇,张宁,李艳荻.基于Gabor滤波器的车道线快速检测方法[J].红外与激光工程,2018,47(8):304-311.
Du Enyu,Zhang Ning,Li Yandi.Lane line quick detection method based on Gabor filter[J].Infrared and Laser Engineering,2018,47(8):304-311.
15 段建民,李岳,庄博阳.基于改进SIS算法和顺序RANSAC的车道线检测方法研究[J].计算机测量与控制,2018,26(8):280-284,289.
Duan Jianmin,Li Yue,Zhuang Boyang.Lane line detection method research based on improved algorithm of SIS and sequential RANSAC[J].Computer Measurement and Control,2018,26(8):280-284,289.
16 贾会群,魏仲慧,何昕,等.基于神经网络与最小二乘法的车道线检测算法研究[J].汽车工程,2018,40(3):363-368.
Jia Huiqun,Wei Zhonghui,He Xin,et al.A research on lane marking detection algorithm based on neural network and least squares method[J].Automotive Engineering,2018,40(3):363-368.
17 游俊甫.基于RANSAC的点云数据特征提取[D].南昌:东华理工大学,2015.
You Junpu.Feature Extraction of Point Cloud Data Based on RANSAC[D].Nanchang:East China University of Technology,2015.
18 Zhang J,Singh S.Low-drift and real-time lidar odometry and mapping[J].Autonomous Robots,2017,41(2):401-416.
[1] 孙越,邹昀,康文宝,王黎明,贾智. 地下无人矿卡智能调度系统框架及应用研究[J]. 黄金科学技术, 2023, 31(1): 133-143.
[2] 李杰林,杨承业,彭朝智,周科平,刘锐凯. 三维激光扫描技术在地下巷道岩体结构面识别的应用[J]. 黄金科学技术, 2021, 29(2): 236-244.
[3] 毕林,王黎明,段长铭. 矿井环境高精定位技术研究现状与发展[J]. 黄金科学技术, 2021, 29(1): 3-13.
[4] 吴家希,王李管,李亚龙. 基于V-REP的井下铲运机自主作业仿真试验软件平台研究[J]. 黄金科学技术, 2020, 28(1): 124-133.
[5] 胡建华,徐朔寒,徐泽林,韩磊. 城市地下矿山采矿方法的数值与熵权耦合优选[J]. 黄金科学技术, 2019, 27(4): 513-521.
[6] 刘定一, 王李管, 陈鑫, 钟德云, 徐志强. 地下矿中长期计划多目标优化及应用研究[J]. 黄金科学技术, 2018, 26(2): 228-233.
[7] 聂兴信,张国丹. 基于熵值法—突变理论的地下矿山紧急避险系统可靠性研究[J]. 黄金科学技术, 2016, 24(6): 72-77.
[8] 陈建宏,曾闵,李涛,江时雨. 基于物元分析—未确知测度理论的地下矿山安全避险“六大系统”可靠性评估方法[J]. 黄金科学技术, 2015, 23(1): 80-84.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!