img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (2): 246-254.doi: 10.11872/j.issn.1005-2518.2020.02.022

• 采选技术与矿山管理 • 上一篇    下一篇

黄土坡铜锌矿微震监测技术应用与灾害预警方法研究

党明智1(),张君2,贾明涛3()   

  1. 1.新疆西拓矿业有限公司,新疆 哈密 839000
    2.长沙迪迈数码科技股份有限公司,湖南 长沙 410083
    3.中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2019-03-18 修回日期:2020-02-21 出版日期:2020-04-30 发布日期:2020-05-07
  • 通讯作者: 贾明涛 E-mail:dmzem@163.com;mingtao_jia@163.com
  • 作者简介:党明智(1964-),男,甘肃金昌人,高级工程师,从事矿山开采工艺与安全研究工作。dmzem@163.com
  • 基金资助:
    国家重点研发计划项目“深部集约化开采生产过程智能管控技术”(2017YFC0602905)

Application and Research of Microseismic Monitoring Technology and Disaster Early Warning Methods in Huangtupo Copper and Zinc Mine

Mingzhi DANG1(),Jun ZHANG2,Mingtao JIA3()   

  1. 1.Xinjiang Xituo Mining Co. ,Ltd,Hami 839000,Xinjiang,China
    2.Changsha Digital Mine Information Technology Co. ,Ltd,Changsha 410083,Hunan,China
    3.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2019-03-18 Revised:2020-02-21 Online:2020-04-30 Published:2020-05-07
  • Contact: Mingtao JIA E-mail:dmzem@163.com;mingtao_jia@163.com

摘要:

黄土坡铜锌矿位于新疆哈密地区,采用地下开采方式开采矿石,该矿山附近存在另外一家矿山企业,2个矿山同时产生的开采扰动使得该矿山面临着复杂的地压环境。为了对黄土坡铜锌矿井下多处采空区附近的地压灾害进行预警,引进微震监测系统,对采空区周边及生产作业区域围岩稳定性进行实时监测。采用优化的台网布设方案改善微震监测系统的性能,并在微震信号自动识别技术的基础上,对地压活动进行实时分析,保证分析结果的时效性。基于微震监测多参数分析方法,结合一次现场真实地压险情提出了一套微震监测地压灾害预警分析方法,该方法能够实现地压提前预警,给矿山人员提供了逃生时间,在地下开采矿山地压监测中具有推广意义。

关键词: 采空区, 地压活动, 微震监测, 地压灾害, 灾害预警

Abstract:

Huangtupo copper and zinc mine located southwest of Hami City,Xinjiang Uygur Autonomous Region,China.It is an underground mine,and there are several goaves in the mining area.There is another mine nearby the area,which is also mining ore.The mining activities of two mines have caused a great disturbance to the pressure environment in the area.Therefore,MicroSeis microseismic monitoring system was introduced to give early warning of the ground pressure disaster that may be caused by goaves in Huangtupo copper and zinc mine.This system monitors the stability of surrounding rock around the goaves and production area in real-time.The microseismic monitoring system has the advantages of broad range,high sensitivity,non-contact,and multi-parameters analysis.In order to ensure the reliability and real-time performance of the microseismic system,the system was optimized.Using network analysis tools to optimize the best microseismic network layout scheme,than the event positioning accuracy is effectively guaranteed.In this paper,through network analysis,the optimized positioning accuracy of the center practice is about 5 m,and the positioning accuracy of the production operation area is within 10 m,which can fully meet the requirements of ground pressure monitoring and disaster early warning.Microseismic systems always pick up signals in rock masses indiscriminately.However,there are many production noise signals in the general engineering environment,such as blasting signals,mechanical vibration signals,and electrical interference signals.In the aspect of signal recognition,the traditional approach is to rely on manual methods for identification and classification,with low efficiency.Therefore,an artificial intelligence method was proposed to identify the microseismic signals.This automatic identification model ensures the real-time performance of the microseismic system and is the basis of disaster early warning.The early warning method of microseismic monitoring technology is based on quantitative seismology.Moreover,quantitative seismology is based on the development of rock mechanics,seismology,and statistics.In this paper,seismological parameters such as microseismic event activity rate,spatial distribution characteristics,seismic moment,energy,and b value were used to analyze ground pressure activity.At the same time,a set of early warning and analysis methods of microseismic monitoring ground pressure disaster was put forward.This method can realize early warning of ground pressure,provide time for evacuation of mine personnel,and effectively grasp the development trend of ground pressure.Furthermore,it can guide mine personnel to go into the mine for production in a safe time,so it has the significance of popularization in the monitoring of underground mine pressure.

Key words: goaf, the activity of ground pressure, microseismic monitoring, the disaster of ground pressure, disaster early warning

中图分类号: 

  • TD76

图 1

黄土坡铜锌矿采空区形态与空间分布"

图2

微震监测系统架构图"

图 3

3层小波包分解"

图4

微震信号自动识别模型"

图5

定位误差分析云图"

图6

立体定位误差分析云图"

图7

黄土坡铜锌矿微震监测台网布置示意图"

表1

黄土坡铜锌矿台网布置方案"

传感器编号分量XYZ
1#单分量31412305.0524719700.617262.330
2#三分量31412276.8834719851.497262.806
3#单分量31412353.5594719890.239262.642
4#单分量31412269.1304719959.101263.296
5#单分量31412330.5234719701.516212.845
6#三分量31412251.3964719830.411212.821
7#单分量31412397.3844719898.546213.618
8#单分量31412255.8244719988.817213.782

表2

爆破定位误差结果"

位置爆破测量坐标定位坐标定位误差/m
XYZXYZ
260 m中段3#穿脉31412359.634719845.432263.32131412355.094719840.27262.7496.91
222.5 m分层5#穿脉31412410.314719883.231222.53231412408.14719886.84226.0235.49
210 m中段9#穿脉31412432.574719753.899212.12531412424.454719756.31213.4068.52

图8

微震事件频数时间序列图"

图9

微震事件空间分布"

图10

监测区域内(整体)能量与地震矩关系"

图11

3#采空区附近围岩(局部)能量与地震矩关系"

1 黄维新,贾明涛,陈有燎,等.基于微震监测技术在矿山安全管理中的应用研究[J].中国安全科学学报,2008,18(1):165-170.
Huang Weixin,Jia Mingtao,Chen Youliao,et al.Study on the application of micro-seismic monitoring technique to mine safety management[J].China Safety Science Journal,2008,18(1):165-170.
2 李庶林.试论微震监测技术在地下工程中的应用[J].地下空间与工程学报,2009,5(1):122-128.
Li Shulin.Discussion on microseismic monitoring technology and its applications to underground projects[J].Chinese Journal of Underground Space and Engineering,2009,5(1):122-128.
3 杨承祥,罗周全,唐礼忠.基于微震监测技术的深井开采地压活动规律研究[J].岩石力学与工程学报,2007,26(4):818-824.
Yang Chengxiang,Luo Zhouquan,Tang Lizhong.Study on rule of geostatic activity based on microseismic monitoring technique in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(4):818-824.
4 姜福兴.微震监测技术在矿井岩层破裂监测中的应用[J].岩土工程学报,2002,24(2):147-149.
Jiang Fuxing.Application of microseismic monitoring technology of strata fracturing in underground coal mine[J].Chinese Journal of Geotechnical Engineering,2002,24(2):147-149.
5 张君,张达,张晓朴,等.残留矿柱回采过程中地压活动联合监测技术研究[J].矿冶,2015,24(3):15-17.
Zhang Jun,Zhang Da,Zhang Xiaopu,et al.Study on joint monitoring technology of geostatic activity in residual pillars stoping process[J].Mining and Metallurgy,2015,24(3):15-17.
6 李鹏翔,陈炳瑞,周扬一,等.硬岩岩爆预测预警研究进展[J].煤炭学报,2019,1(1):1-21.
Li Pengxiang,Chen Bingrui,Zhou Yangyi,et al.Review of the research progress of rockburst prediction and early warning in hard rock underground engineering[J].Journal of China Coal Society,2019,1(1):1-21.
7 刘宏发,胡静云,李庶林,等.微震监测技术在柿竹园矿地压监测中的成功预警案例[J].采矿技术,2012,12(5):43-44.
Liu Hongfa,Hu Jingyun,Li Shulin,et al.A successful early warning case in Shizhuyuan mine[J].Mining Technology,2012,12(5):43-44.
8 张楚旋,李夕兵,康虔,等.基于微震活动性参数的矿山灾害风险性评价[J].安全与环境学报,2017,17(4):1276-1280.
Zhang Chuxuan,Li Xibing,Kang Qian,et al.Mining disaster risk assessment based on the microseismic activity parameters[J].Journal of Safety and Environment,2017,17(4):1276-1280.
9 王平,冯兴隆,石峰,等.基于微震监测技术的断层活化规律及预警研究[J].有色金属(矿山部分),2019,71(5):1-5.
Wang Ping,Feng Xinglong,Shi Feng,et al.Investigation on activation characteristics and predicting of faults based on microseismic monitoring[J].Nonferrous Metals(Mining Section),2019,71(5):1-5.
10 马天辉,唐春安,唐烈先,等.基于微震监测技术的岩爆预测机制研究[J].岩石力学与工程学报,2016,35(3):470-483.
Ma Tianhui,Tang Chun’an,Tang Liexian,et al.Study on rock burst prediction mechanism based on microseismic monitoring technology[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(3):470-483.
11 Luo Z Q,Wang W,Qin Y G,et al.Early warning of rock mass instability based on multi-field coupling analysis and microseismic monitoring[J].Transactions of Nonferrous Metals Society of China,2019,29(6):1285-1293.
12 吕进国,潘立.微震预警冲击地压的时间序列方法[J].煤炭学报,2010,35(12):2002-2005.
Jinguo Lü,Pan Li.Microseismic predicting coal bump by time series method[J].Journal of China Coal Society,2010,35(12):2002-2005.
13 于洋,冯夏庭,陈天宇,等.深埋隧洞不同掘进方式下即时型岩爆微震对比分析[J].东北大学学报(自然科学版),2014,35(3):429-432.
Yu Yang,Feng Xiating,Chen Tianyu,et al.Contrastive analysis of microseismic events for immediateockburst in deep tunnels with different excavation methods[J].Journal of Northeastern University(Natural Science),2014,35(3):429-432.
14 冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报,2002,23(1):57-59.
Feng Xiating,Zhao Hongbo.Prediction of rockburst using support vector machine[J].Journal of Northeastern University,2002,23(1):57-59.
15 杨涛,李国维.基于先验知识的岩爆预测研究[J].岩石力学与工程学报,2000,19(4):429-431.
Yang Tao,Li Guowei.Study on rockburst prediction me-thod based on the prior knowledge[J].Chinese Journal of Rock Mechanics and Engineering,2000,19(4):429-431.
16 何正祥,彭平安,廖智勤.基于梅尔倒谱系数的矿山复杂微震信号自动识别分类方法[J].中国安全生产科学技术,2018,14(12):41-47.
He Zhengxiang,Peng Ping’an,Liao Zhiqin.An automatic identification and classification method of complex microseismic signals in mines based on mel-frequency cepstral coefficients[J].Journal of Safety Science and Technology,2018,14(12):41-47.
17 柳云龙,田有,冯晅,等.微震技术与应用研究综述[J].地球物理学进展,2013,28(4):1801-1808.
Liu Yunlong,Tian You,Feng Heng,et al.Review of microseism technology and its application[J].Progress in Geophysics,2013,28(4):1801-1808.
18 Gibowicz S J,Kijko A.矿山地震学引论[M].修济刚,徐平,杨心平,译.北京:地震出版社,1998.
Gibowicz S J,Kijko A.An Introduction to Mine Seismology [M].Xiu Jigang,Xu Ping,Yang Xinping,trans.Beijing:Earthquake Press,1998.
19 唐礼忠,杨承祥,潘长良.大规模深井开采微震监测系统站网布置优化[J].岩石力学与工程学报,2006,25(10):2036-2042.
Tang Lizhong,Yang Chengxiang,Pan Changliang.Optimization of microseismic monitoring network for large-scale deep well mining[J].Chinese Journal of Rock Mechanics and Engineering,2006,25(10):2036-2042.
20 李京濂,尚仕科,张君,等.统计地震学在矿山动力灾害预测中的应用[J].有色金属(矿山部分),2015,67(1):7-10.
Li Jinglian,Shang Shike,Zhang Jun,et al.Application of statistical seismology in prediction of mine dynamic disaster[J].Nonferrous Metals(Mining Section),2015,67(1):7-10.
21 张君.冬瓜山铜矿围岩破坏震源机制与微震活动响应规律研究[D].长沙:中南大学,2013.
Zhang Jun.Solution to Seismic Source Mechanism of Surrounding Rock and Seismicity Response to the Mining in Dongguashan Copper Mine[D].Changsha:Central South University,2013.
22 唐礼忠,张君,李夕兵,等.基于定量地震学的矿山微震活动对开采速率的响应特性研究[J].岩石力学与工程学报,2012,31(7):1349-1354.
Tang Lizhong,Zhang Jun,Li Xibing,et al.Research on response of mine microseismicity to mining rate based on quantitative seismology[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(7):1349-1354.
23 唐礼忠.深井矿山地震活动与岩爆监测及预测研究[D].长沙:中南大学,2008.
Tang Lizhong.Study on Monitoring and Prediction of Seismicity and Rockburst in a Deep Mine[D].Changsha:Central South University,2008.
24 尹贤刚,李庶林,黄沛生,等.微震监测系统在矿山安全管理中的应用研究[J].矿业研究与开发,2006,26(1):65-68.
Yin Xiangang,Li Shulin,Huang Peisheng,et al.Application of micro-seismic monitoring system in mine safety management[J].Mining Research and Development,2006,26(1):65-68.
[1] 杨轶男, 胡建华, 周坦, 赵风文, 王牧帆. 基于改进DCNN法的微震信号自动识别模型及应用[J]. 黄金科学技术, 2023, 31(5): 794-802.
[2] 张君, 杨清平, 刘芳芳, 张金钟, 徐刚强, 李晓松. 深井规模化开采矿山与分布式微震监测系统设计研究[J]. 黄金科学技术, 2023, 31(4): 659-668.
[3] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[4] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[5] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[6] 叶光祥,黄智群,王晓军,张树标,苑栋. 基于未确知测度理论的石英脉型钨矿山采空区稳定性评价[J]. 黄金科学技术, 2021, 29(3): 433-439.
[7] 廖宝泉,柯愈贤,卿琛,张华熙,黄豪琪,方立发,王成,陶铁军. 基于相对差异函数的金属矿采空区危险性识别[J]. 黄金科学技术, 2021, 29(3): 440-448.
[8] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[9] 邓红卫,张维友,虞松涛,高宇旭. 基于变权联系云的采空区稳定性二维评价模型[J]. 黄金科学技术, 2020, 28(1): 32-41.
[10] 程力,刘焕新,朱明德,吴钦正. 金属矿山地下采空区问题研究现状与展望[J]. 黄金科学技术, 2020, 28(1): 70-81.
[11] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[12] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[13] 谢学斌,熊胡晨,谢和荣,李建坤,田听雨. 考虑水平荷载的采空区群系统灾变失稳模型[J]. 黄金科学技术, 2019, 27(3): 368-377.
[14] 崔宇,李夕兵,董陇军,白吕. 玲珑金矿微震监测台网布设优化[J]. 黄金科学技术, 2019, 27(3): 417-424.
[15] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!