img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (2): 271-277.doi: 10.11872/j.issn.1005-2518.2020.02.131

• 采选技术与矿山管理 • 上一篇    下一篇

戈塘金矿房柱法开采围岩稳定性分析

陈洲1(),左宇军2()   

  1. 1.贵州理工学院矿业工程学院,贵州 贵阳 550003
    2.贵州大学矿业学院,贵州 贵阳 550025
  • 收稿日期:2019-07-14 修回日期:2020-01-09 出版日期:2020-04-30 发布日期:2020-05-07
  • 通讯作者: 左宇军 E-mail:20150683@git.edu.cn;zuo_yujun@163.com
  • 作者简介:陈洲(1989-),男,贵州岑巩人,硕士研究生,从事矿山动力灾害防治的研究工作。20150683@git.edu.cn
  • 基金资助:
    国家自然科学基金项目“动力扰动下断层活化诱发煤与瓦斯突出机理研究”(51574093);贵州省应用基础研究计划重大项目“贵州复杂构造区页岩气赋存与渗透机制研究”(编号:JZ字[2014]2005)、贵州省科技厅基础研究计划(科学技术基金项目)“南方岩溶地区地下暗河下采煤保水机理研究”(编号:黔科合基础[2020]1Y215)和国家自然科学基金项目“黔西南微细浸染型金矿床开采巷道围岩采动致灾与控制机理研究”(51964007)

Stability Analysis of Surrounding Rock of Chamber and Pillar Mining in Getang Gold Mine

Zhou CHEN1(),Yujun ZUO2()   

  1. 1.Mining Engineering College of Guizhou Institute of Technology,Guiyang 550003,Guizhou,China
    2.Minging College of Guizhou University,Guiyang 550025,Guizhou,China
  • Received:2019-07-14 Revised:2020-01-09 Online:2020-04-30 Published:2020-05-07
  • Contact: Yujun ZUO E-mail:20150683@git.edu.cn;zuo_yujun@163.com

摘要:

戈塘金矿矿体厚度变化较大,地质条件复杂。为科学设计井下采场参数,分析采空区顶板的破坏机理及矿柱的承载机理,指导矿山安全生产,以戈塘金矿为研究对象,设计了采场参数,分析了采场围岩稳定性。通过理论计算,采用房柱法开采时,推荐矿柱尺寸为3 m×3 m,矿房跨度不超过10 m;利用有限元软件Phase2对留设不同宽高比的矿柱时采场围岩的稳定性进行了数值模拟分析。结果显示:矿柱内部出现应力集中,采空区顶底板、岩帮为应力降低区域;随着矿柱宽高比的增大,采空区边界附近的应力水平和位移降低,矿柱内应力集中得到缓解,变形量降低。综合分析认为,矿柱宽高比对采场围岩稳定性有一定影响,保持矿柱宽高比约为0.500,可以较好地维持采场稳定。

关键词: 房柱法, 围岩稳定性, 承载机理, 矿柱, 矿房跨度, 数值分析, 戈塘金矿

Abstract:

The room and pillar method is one of the mining methods with high labor productivity, which is widely used in small metal mines.Getang gold mine is located in Anlong County,southwest Guizhou Province,with complex geological conditions.The gold ore body directly covers the undulating paleo-karst erosion surface of the Maokou Formation,and its thickness varies from 0.3 m to 76.0 m.The lithology of the top and bottom of the ore body is complex.In order to design the parameters of underground stope scientifically,analyze the failure mechanism of the roof of the goaf and the bearing mechanism of the pillar,and guide the safe production of the mine,this paper used the theoretical calculation combined with the numerical simulation method to reasonably select the stope parameters and carry out the numerical analysis of the surrounding rock stability of the stope.Through the calculation of the mining span theory,the span of the mine is ≤10 m and the recommended pillar size is 3 m×3 m.Due to the large variation of the thickness of the orebody,the stability of the surrounding rock of the stope should be analyzed under different mine height conditions.In this paper, a numerical model of pillar width of 0.300,0.375 and 0.500 was established by using the finite element Phase 2, and the stability of the surrounding rock in the stope was analyzed by numerical simulation.The simulation results show that when the pillar width-to-depth ratio is 0.300,0.375,0.500,the average stress levels of the floor in the goaf are 12.78,8.04,7.03 MPa.The average stress levels of the rock mass are 19.02,13.03,13.06 MPa.The average stress levels of the roof of the goaf are 10.73,7.20,6.04 MPa;The average stress levels inside the pillar are 28.07,18.62,18.54 MPa;The average displacements near the floor of the goaf are 0.83,0.67,0.62 mm;The average displacement near the rock dam is 2.52,1.27,0.95 mm;The average displacement near the top plate is 8.53,4.73,4.45 mm(maximum displacement is 9.80,5.55,5.27 mm);The average internal displacement of the pillar are 2.05,0.93,0.68 mm,respectively.According to the com-prehensive analysis,we can conclude that:(1)After the mining,the stress concentration inside the pillar is affected by the supporting pressure,and the floor,rock and roof of the goaf are the stress reduction area;the stress level inside the pillar is the highest near the boundary of the goaf.The stress level inside the rock core is second,and the stress level of the floor and roof of the goaf is the lowest.(2)After the mining,the maximum displacement occurs in the vicinity of the roof of the goaf due to the occurrence of the fracture zone and the plastic zone and the pressure of the overburden. Due to the conduction of support pressure,the displacement value of the pillar from top to bottom is gradually reduced.(3)The maximum stress value and maximum displacement inside the pillar appear at the top of the pillar;The pillar width-to-depth ratio has a certain influence to the stability of the surrounding rock of the stope.With the increase of width-to-depth ratio,the average stress level and average displacement near the boundary of the goaf are reduced,the stress concentration in the pillar is alleviated,and the deformation is reduced. In the process of mining,the size of the pillar should be increased appropriately at the location where the depth of the ore body is large and the thickness of the ore body is large.Keeping the width-to-depth ratio of the pillar at about 0.500 can better maintain the stability of the stope.

Key words: chamber and pillar method, stability of surrounding rock, bearing mechanism, pillar, the span of mineroom, numerical analysis, Getang gold mine

中图分类号: 

  • TD85

图1

岩梁支承条件H-岩梁厚度;L-矿房跨度;q-岩梁自重及外部均布荷载。"

表1

采空区跨度计算结果"

序号直接顶板厚度h/m矿房跨度L/m
14≤6.86
26≤10.22
38≤13.50
410≤16.82

图2

数值分析模型"

表2

数值分析模型参数"

矿柱尺寸/m矿柱宽高比矿房跨度/m矿房高度/m模型长度/m模型宽度/m单元数/个节点数/个模型方向
3×30.30010107083754433竖直剖面
3×30.3751085671638375竖直剖面
3×30.5001064259782447竖直剖面

表3

数值分析模型岩石力学参数"

岩性容重/(kN·m-3泊松比弹性模量/MPa抗拉强度/MPa摩擦角/(°)内聚力/MPa
炭质泥岩26.50.24010 3501.9136.723.95
硅化灰岩角砾岩27.40.26045 0009.0033.2510.00
灰岩26.10.27572 50012.2542.5029.40

图3

采空区边界附近主应力云图"

表4

不同宽高比条件下采空区边界最大主应力"

宽高比最大主应力/MPa
采空区底板岩帮采空区顶板矿柱
0.30012.7819.0210.7328.07
0.3758.0413.037.2018.62
0.5007.0313.066.0418.54

图4

采空区边界附近位移云图"

表5

不同宽高比条件下采空区边界位移"

宽高比位移/mm
采空区底板岩帮采空区顶板矿柱
0.3000.832.528.532.05
0.3750.671.274.730.93
0.5000.620.954.450.68

图5

不同宽高比条件下矿柱的最高应力水平及最大位移曲线"

1 陈国山,翁春林.金属矿地下开采[M].北京:冶金工业出版社,2009:138-139.
Chen Guoshan,Weng Chunlin.Metal Mining Underground[M].Beijing:Metallurgical Industry Press,2009:138-138.
2 张永申,钱宇,赵剑英.浅孔房柱法在麦坝铝土矿地下矿山的应用[J].世界有色金属,2018(16):222-223,225.
Zhang Yongshen,Qian Yu,Zhao Jianying.Application of shallow hole room and pillar method in underground mine of Maba bauxite mine[J]. World Nonferrous Metals,2018(16):222-223,225.
3 林卫星,浅孔房柱法在地下铝土矿回采中的应用[J].矿业研究与开发,2017,37(12):117-121.
Lin Weixing.Application of short-hole room-pillar method on underground bauxite mining[J]. Mining Research and Development,2017,37(12):117-121.
4 赵坤,李自国.缓倾斜中厚矿体房柱法回采方案优化与应用[J].轻金属,2017(1):5-9.
Zhao Kun,Li Ziguo.Optimization and application of room-pillar mining method for gently inclined medium thickness ore bodies[J].Light Metals,2017(1):5-9.
5 刘沐宇,徐长佑.地下采空区矿柱稳定性分析[J].矿冶工程,2000,20(1):19-22.
Liu Muyu,Xu Changyou.Stability analysis of pillars in mined-out area[J]. Mining and Metallurgical Engineering,2000,20(1):19-22.
6 赵国彦,周礼,李金跃,等.房柱法矿柱合理尺寸设计及矿块结构参数优选[J].中南大学学报(自然科学版),2014,45(11):3943-3948.
Zhao Guoyan,Zhou Li,Li Jinyue,et al.Reasonable pillar size design and nugget structural parameters optimization in room-and-pillar mining[J].Journal of Central South University (Science and Technology),2014,45(11):3943-3948.
7 王进,王晓军.基于FLAC3D的房柱法采场人工矿柱参数优化模拟[J].中国钨业,2017,32(5):32-36.
Wang Jin,Wang Xiaojun. Parameter optimization of artifi-cial pillar in the room and pillar method based on FLAC3D[J].China Tungsten Industry,2017,32(5):32-36.
8 郁富林,肖国喜.近地房柱法矿柱尺寸对石膏矿采空区稳定性影响研究[J].采矿技术,2015,15(6):60-64.
Yu Fulin,Xiao Guoxi.Study on the influence of pillar size on goaf stability of gypsum mine by near floor chamber pillar method[J].Mining Technology,2015,15(6):60-64.
9 王泽江,李秦,邵磊昌,等.倾斜薄矿脉房柱法开采人工矿柱参数优化和安全回采的数值模拟研究[J].铀矿冶,2016,35(3):175-181.
Wang Zejiang,Li Qin,Shao Leichang,et al.Numerical modeling study for artificial pillars paremeter optimization in the inclined thin vein by room-and pillars mining method and safety backstopping[J].Uranium Mining and Metallurgy,2016,35(3):175-181.
10 钱建平.黔西南微细浸染型金矿的地质特征和几点认识[J].桂林工学院学报,2001,21(1):27-34.
Qian Jianping.Geological characteristics and several considerationsof micrograined disseminated gold deposits in southwest Guizhou[J].Journal of Guilin Institute of Te-chnology,2001,21(1):27-34.
11 陈洲.复杂地质条件下金矿矿体形态分析及建模[D].贵阳:贵州大学,2015.
Chen Zhou.Morphological Analysis of Gold Ore-body and Modeling Under Complicated Geological Conditions[D].Guiyang:Guizhou University,2015.
12 万串串,陈国良,周高明,等.基于不同岩体稳固级别的地下采场结构参数优化[J].黄金科学技术,2018,26(6):761-770.
Wan Chuanchuan,Chen Guoliang,Zhou Gaoming,et al.Optimation of underground stope structure parameters based on different rockmass stability classification[J].Gold Science and Technology,2018,26(6):761-770.
13 莫家贵,胡建华.高峰矿深地中部矿段釆场结构参数仿真优化[J].中国矿山工程,2018,47(5):32-35.
Mo Jiagui,Hu Jianhua.Simulation optimization of stope structure parameters in deep middle ore section in Gaofeng mine[J].China Mine Engineering,2018,47(5):32-35.
14 苏环,张丹丹,侯俊.新城金矿二步采场结构参数优化及应用[J].黄金,2018,39(9):35-38.
Su Huan,Zhang Dandan,Hou Jun.Optimization of second-step stope structure parameters for Xincheng gold mine[J].Gold,2018,39(9):35-38.
15 冉光建.胡家沟石灰岩矿房柱法安全开采参数优化研究[D].重庆:重庆科技学院,2015.
Ran Guangjian. Research on the Optimized of Safe Mining Parameters by Room and Pillar Method in Hujiagou Limestone Mine[D].Chongqing:Chongqing University of Science and Technology,2015.
16 林承焰,王文广,董春梅,等.储层成岩数值模拟研究现状及进展[J].中国矿业大学学报,2017,46(5):1084-1101,1143.
Lin Chengyan,Wang Wenguang,Dong Chunmei,et al.State quo of reservoir diagenetic numerical simulation and its advancement[J].Journal of China University of Mining and Technology,2017,46(5):1084-1101,1143.
17 胡德超.地下硐室开挖过程的数值模拟分析[J].价值工程,2019,38(18):198-200.
Hu Dechao.Numerical simulation analysis of excavation process of underground cavity[J].Value Engineering,2019,38(18):198-200.
18 冯吉成,石建军,张凤岩,等. 赵固一矿巷道复合顶板岩层结构类型与稳定性数值模拟分析[J].煤炭工程,2019,51(5):123-128.
Feng Jicheng,Shi Jianjun,Zhang Fengyan,et al.Rock structure type and numerical simulation analysis on stability of roadway compound roof in Zhaogu No.1 mine[J].Coal Engineering,2019,51(5):123-128.
19 杨宁,尹贤刚,林尧.基于3DMine-Phase2分析复杂空区稳定性[J].中国钨业,2018,33(4):36-41.
Yang Ning,Yin Xiangang,Lin Yao. Complex goaf stability analysis based on 3DMine-Phase2[J].China Tungsten Industry,2018,33(4):36-41.
20 宋鹏程,江巍,王彦海,等.基于Phase2的软硬互层反倾岩质边坡稳定性与破坏模式研究[J].三峡大学学报(自然科学版),2019,41(3):46-50.
Song Pengcheng,Jiang Wei,Wang Yanhai,et al.Reseach on stability and failure modes of anti-dumping interlayer rock slope based on software Phase2[J]. Journal of China Three Gorges University(Natural Sciences),2019,41(3):46-50.
[1] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[2] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[3] 高峰, 李成成, 覃庆韩, 欧恩国. 基于RG-BN理论的破碎盘区矿柱群稳定性分析[J]. 黄金科学技术, 2023, 31(6): 900-910.
[4] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[5] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[6] 周子龙,王亦凡,柯昌涛. “多米诺骨牌”破坏现象下的矿柱群系统可靠度评价[J]. 黄金科学技术, 2018, 26(6): 729-735.
[7] 谷中元,周科平. 基于蠕变试验的浅埋空区群结构时变力学特性研究[J]. 黄金科学技术, 2018, 26(4): 511-519.
[8] 白朝阳,王国伟,张鹏,刘拴平. 水平采空区群条件下矿柱回采爆破位置研究[J]. 黄金科学技术, 2017, 25(4): 81-86.
[9] 戴兴国,李岩,张碧肖. 深井膏体降压满管输送数值模拟研究[J]. 黄金科学技术, 2016, 24(3): 70-75.
[10] 王晓军,邓书强,李永欣,卓毓龙,冯萧. 散体介质下水平矿柱顶板失稳控制研究[J]. 黄金科学技术, 2016, 24(2): 76-82.
[11] 戴兴国,唐凌,陈增剑,聂峥. 基于λ模糊测度和Choquet积分的回采方案动态优选[J]. 黄金科学技术, 2016, 24(2): 1-7.
[12] 于常先,许子刚,王平,孙军涛,杜皓. 阶段空场与上向分层联合采矿法应用实践[J]. 黄金科学技术, 2015, 23(4): 35-38.
[13] 于常先,付其锐,刘成鹏,吴若菡. 全充填嗣后连续采矿法在缓倾斜薄矿脉矿柱回采中的应用[J]. 黄金科学技术, 2014, 22(2): 51-54.
[14] 刘胜光, 郭广军, 刘军晓, 徐永彬, 王彦玮. 山东焦家金矿残矿回收技术的研究[J]. J4, 2010, 18(1): 80-82.
[15] 刘党权, 孙增鹏. 分段凿岩阶段矿房法的矿柱回收及放矿管理[J]. J4, 2005, 13(1-2): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!