img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (2): 278-284.doi: 10.11872/j.issn.1005-2518.2020.02.094

• 采选技术与矿山管理 • 上一篇    下一篇

缅甸实皆省某金矿工艺矿物学研究

傅开彬1,2(),王维清1,2,赵涛涛3,龙美樵1,2,侯普尧1,2,杜明霞1,2   

  1. 1.固体废物处理与资源化教育部重点实验室,四川 绵阳 621010
    2.西南科技大学环境与资源工程学院,四川 绵阳 621010
    3.四川省海蓝晴天环保科技有限公司,四川 成都 610045
  • 收稿日期:2019-06-20 修回日期:2019-11-24 出版日期:2020-04-30 发布日期:2020-05-07
  • 作者简介:傅开彬(1975-),男,四川威远人,副教授,从事难处理矿石选矿方面的研究工作。fukaibin@126.com
  • 基金资助:
    四川省科技计划项目“纳米气泡气浮修复重金属污染土壤应急关键技术和装备研发”(编号:2018GZ0403或18ZS2114)和北京市工业典型污染物资源化处理重点实验室项目“基于电化学的铜锌多金属尾矿‘两段’细菌浸出工艺研究”(ROT-2019-YB5)

Mineralogical Characterization of a Gold Ore in Sagaw Province,Myanmar

Kaibin FU1,2(),Weiqing WANG1,2,Taotao ZHAO3,Meiqiao LONG1,2,Puyao HOU1,2,Mingxia DU1,2   

  1. 1.Key Laboratory of Solid Waste Treatment and Resource Recycle,Ministry of Education,Mianyang 621010,Sichuan,China
    2.School of Environment and Resource,Southwest University of Science and Technology,Mianyang 621010,Sichuan,China
    3.Sichuan Hailan Qingtian Environmental Protection Technology Co. , Ltd,Chengdu 610045,Sichuan,China
  • Received:2019-06-20 Revised:2019-11-24 Online:2020-04-30 Published:2020-05-07

摘要:

为了查明缅甸实皆省某金矿工艺矿物学特征,采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)和化学分析等技术手段,系统研究原矿化学组成、矿物组成、粒度分布、金物相、单体解离度和矿石结构构造。结果表明:①原矿金品位为5.13×10-6,为主要有价元素。②矿石具自形晶粒结构,块状、斑杂状和浸染状构造,矿物组成简单。其中,金属矿物主要为黄铁矿,含少量黄铜矿、磁铁矿和斑铜矿,脉石矿物主要为石英、斜长石、方解石、绿泥石和白云母。③矿石中金易单体解离,重矿物中金分布率为3.94%,以单体金形式存在,金成色较好(大于93%),呈角粒状、块状、片状和圆片状;非重矿物中大部分金也已单体解离,游离金分布率为92.68%,包裹金分布率为3.38%。④细粒级矿石中金的单体解离度也比较高,-0.074 mm粒级中单体金含量为98.72%,连生体金含量为1.28%,各粒级中金的富集现象不明显。因此,重选—全泥氰化、浮选和重选—浮选等工艺均能有效回收矿石中金。

关键词: 缅甸, 金矿, 工艺矿物学, 硫化矿, 单体解离

Abstract:

As trade friction between China and the United States escalates,international concerns about the creditworthiness of the United States will have a negative impact on the status of the dollar as a national currency,countries may increase their holdings of gold and demand for gold will increase.Myanmar is one of the most promising countries for China’s direct mining investment.The gold resources in Burma are abundant and widely distributed.At present,there are few reports on the development and utilization of gold mines in Myanmar.It is of great significance to strengthen basic research on overseas mineral resources and avoid technical risks.Mineral development investment risk is bigger due to lack of basic materials of process mineralogy of a gold mine in sagaing province,Myanmar.The chemical composition,mineral composition,particle size distribution,physical phase and dissociation degree of gold and structure of ore were studied by means of X-ray diffraction (XRD),scanning electron microscope (SEM) and chemical analysis to find out the process mineralogy characteristics of a gold mine in Sagaw Province,Myanmar.The results show that the grade of gold is 5.13×10-6,which is the main valuable element.The ore has autogenous grain structure,block structure,patchy structure and disseminated structure.The mineral composition of the ore is simple,the metal minerals are mainly pyrite (14.75%),a small amount of chalcopyrite,magnetite and porphyry,and the gangue minerals are mainly quartz,plagioclase,calcite,chlorite and white mica.The distribution rate of gold in heavy minerals is 3.94%.Free gold is hornlike,massive,flaky and circular, the fineness of gold is good (more than 93%).Gold is easy to dissociate.Most of the gold in the non-heavy minerals has been dissociated,the distribution rate of free gold is 92.68%.The distribution rate of gold parcel is 3.38%.The monomer dissociation degree of fine-grained gold is also relatively high.In the -0.074 mm grain size,The monomer gold content is 98.72%,the adherent-gold content is 1.28%.After 60 h of full-mud cyanidation,the gold leaching rate reached 90.19%,which was close to the rule of gold monomer dissociation degree in the gold mine.It is necessary to continue to strengthen the research on the theory and technology of selecting and metallurgy of a gold mine in shijie province and improve its technical and economic indexes.

Key words: Myanmar, gold mine, process mineralogy, sulfide, mineral liberation

中图分类号: 

  • TF11

表1

原矿元素组成"

化学成分质量分数化学成分质量分数
SiO247.65P2O50.29
Fe2O310.38MnO0.16
Al2O313.36Cr2O30.09
CaO11.37Co3O40.06
SO37.67BaO0.05
MgO3.34ZrO20.02
NaO3.22Au*5.13
K2O1.45C<0.05
TiO20.99As<0.05

表2

原矿矿物组成及其含量"

金属矿物分子式质量分数脉石矿物分子式质量分数
黄铁矿FeS214.75石英SiO231.53
黄铜矿CuFeS2少量斜长石Na[AlSi3O8]-Ca[Al2Si2O8]18.73
磁铁矿Fe3O4少量方解石CaCO313.43
斑铜矿Cu5FeS4少量绿泥石Y3(Z4O10)(OH)2·Y3(OH)68.47
自然金Au<0.01白云母KAl2(AlSi3O10)(OH)29.79
其他金属矿物3.3

表3

金物相分析结果"

矿相金品位/×10-6分布率/%
单体金粗颗粒单体金0.3010.87
微细单体金4.4085.75
总单体金3.9496.62
包裹金碳酸盐包裹金0.00770.15
石英和硅酸盐矿物包裹金0.0120.24
硫化矿包裹金0.152.99
褐铁矿包裹金0.000.00
总包裹金0.133.38
合计4.07100.00

图1

单体金SEM(a)和EDS(b)分析结果"

表4

原矿筛析结果"

-0.074 mm含量占比/%筛析粒级/mm产率/%品位/×10-6金分布率/%金累计分布率/%
70+0.1655.635.125.305.30
-0.165~+0.07425.195.3724.8430.14
-0.074~+0.03827.845.2626.957.04
-0.038~+0.02521.665.5522.179.14
-0.02519.685.7720.86100.00
原矿1005.44100-
80+0.1655.465.345.305.30
-0.165~+0.07413.495.1912.8118.11
-0.074~+0.03828.845.3928.4346.54
-0.038~+0.02524.665.7926.1172.65
-0.02527.555.4327.35100.00
原矿1005.47100-
90+0.1654.855.544.844.84
-0.165~+0.0745.275.665.3710.21
-0.074~+0.03829.375.3728.3838.59
-0.038~+0.02528.815.3227.5866.17
-0.02531.75.9333.83100.00
原矿1005.56100-

图2

原矿光学显微镜照片Py-黄铁矿;Ccp-黄铜矿;Qtz-石英;Cal-方解石;Ms-白云母;Pl-斜长石"

表5

金单体解离度测定结果"

粒级/mm

单体

占比/%

连生体

连生体

占比/%

连生关系占比/%连生体体积(V)大小分布率/%
脉石金+脉石V>3434>V>1212V>14V<14
+0.42010099.510.49--6.2393.77
-0.42~+0.09632.5667.4499.340.660.542.546.5490.38
-0.096~+0.07496.733.2799.210.7916.5418.9725.8738.62
-0.07498.721.2899.560.4422.5432.4738.546.45

图3

dmax<0.1 mm重砂单体解离金的SEM分析"

1 熊爱宗.全球贸易摩擦对国际货币体系的影响[J].国际金融研究,2019(3):46-54.
Xiong Aizong.Effect of global trade friction on international monetary system[J].Studies of International Finance,2019(3):46-54.
2 时海娜.特朗普政府下的中美贸易摩擦[J].现代商贸工业,2019,40(21):48-51.
Shi Haina.Sino-US trade friction under the Trump administration[J].Modern Business Trade Industry,2019,40(21):48-51.
3 崔敏利,叶锦华,何学洲.“一带一路”地区大型超大型金矿床地质背景与成矿作用[J].地质通报2017,36(1):154-167.
Cui Minli,Ye Jinhua,He Xuezhou.Geological setting and mineralization of large-superlarge gold deposites in “One Belt,One Road” region[J].Geological Bulletin of China,2017,36(1):154-167.
4 张青枝.“一带一路”背景下我国矿业绿色发展之对策[J].中国市场,2019(9):66-67.
Zhang Qingzhi.Countermeasures of China’s mining industry green development under the background of “One Belt and One Road”[J].China Market,2019(9):66-67.
5 郑明贵,胡志亮.海外矿业投资环境风险评价研究[J].黄金科学技术,2018,26(5):596-604.
Zheng Minggui,Hu Zhiliang.Study on environmental risk evaluation of overseas mining investment[J].Gold Science and Technology,2018,26(5):596-604.
6 周凯锋.云南周边五国矿业投资环境的可拓性研究[D].昆明:昆明理工大学,2010.
Zhou Kaifeng.The Extension Study on Mining Investment Environment of Yunnan Province Neighboring Five Countries[D].Kunming:Kunming University of Science and Technology,2010.
7 宋海燕.“一带一路”背景下的缅甸投资环境研究[D].临汾:山西师范大学,2017.
Song Haiyan.The Investment Environment of Myanmar Under the Background of “One Belt and One Road”[D].Linfen:Shanxi Normal University,2017.
8 郭泽君,丁世春,郭彬.缅甸联邦第二特区(佤邦)芒古弄地区金矿特征[J].地质与资源,2011,20(4):310-311.
Guo Zejun,Ding Shichun,Guo Bin.The characteristics of the gold deposites in Mongonon aera,Myanmar[J].Geology and Resources,2011,20(4):310-311.
9 范良军,刘文勇,辛荣,等.缅甸文多地区铜金矿找矿前景分析[J].世界有色金属,2018(2):82-83.
Fan Liangjun,Liu Wenyong,Xin Rong,et al.Prospect analysis of copper and gold prospecting in Burma[J].World Nonferrous Metals,2018(2):82-83.
10 陈剑锋.缅甸胶帕图金矿选冶工艺浅议[J].黄金科学技术,2011,19(1):58-60.
Chen Jianfeng.Discussion on the inspection of Kyaukpahto gold mine in Myanmar[J].Gold Science and Technology,2011,19(1):58-60.
11 傅开彬,王维清,黄阳,等.贵州某含金汞冶炼渣工艺矿物学研究[J].矿物学报,2013,33(2):158-162.
Fu Kaibin,Wang Weiqing,Huang Yang,et al.A study on process mineralogy of a gold-bearing smelting slag of mercury[J].Acta Mineralogical Sinica,2013,33(2):158-162.
12 傅开彬,秦天邦,汤鹏成,等.四川瓦基铜矿工艺矿物学与可浮性实验[J].矿物学报,2019,39(3):305-310.
Fu Kaibin,Qin Tianbang,Tang Pengcheng,et al.Study on process mineralogy of Waji copper mine in Sichuan,China and its flotation performance[J].Acta Mineralogical Sinica,2019,39(3):305-310.
13 李赛,齐伟,张雁,等.碳质金矿生物预氧化研究进展[J].贵金属,2018,39(3):72-78.
Li Qian,Qi Wei,Zhang Yan,et al.Advances in biopreoxidation of carbonaceous gold ore[J].Precious Metals,2018,39(3):72-78.
14 张伟晓,闾娟沙,张济文.国外某含砷难处理金矿提金工艺试验[J].有色金属(冶炼部分),2019(4):56-59.
Zhang Weixiao,Juansha Lü,Zhang Jiwen.Technological test on abroad arsenic bearing refractory gold mine[J].Nonferrous Metals (Extractive Metallurgy),2019(4):56-59.
15 De Carvalho L C,Da Silva S R,Giardini R M N,et al.Bio-oxidation of refractory gold ores containing stibnite and gudmundite[J].Environmental Technology and Innovation,2019,15:1-11.
16 赵玉卿,黄秉雄,刘磊,等.蛇纹石、绿泥石、滑石的可浮性及抑制方法综述[J].矿产综合利用,2018(2):7-11.
Zhao Yuqing,Huang Bingxiong,Liu Lei,et al.Summary of serpentine,chlorite,talc floatability and rejecting[J].Multipurpose Utilization of Mineral Resources,2018(2):7-11.
17 陈乔,杨洪英,陈贵民,等.尼尔森重选在我国石英脉型金矿选矿工艺中的应用[J].黄金科学技术,2017,25(5):73-79.
Chen Qiao,Yang Hongying,Chen Guimin,et al.Application of Knelson gravity concentration in quartz vein type gold beneficiation process in China[J].Gold Science and Technology,2017,25(5):73-79.
18 Cook R B,Francis C A,Mauthner M.The occurrence and characteristics of gold nuggets and masses[J].Rocks and Minerals,2017,92(4):318-343.
19 周彩斌,周斌,石贵明,等.分级浓度对磨矿分级回路产品粒度分布的数值模拟[J].有色金属(选矿部分),2016(2):60-64.
Wu Caibin,Zhou Bin,Shi Guiming,et al.Numerical simulation of product particle size distribution under grader concentration in grinding-classification circuit[J].Nonferrous Metals (Mineral Processing Section),2016(2):60-64.
20 衣德强,张祖刚,甘茂武,等.梅山铁矿矿泥选别工艺优化[J].中国资源综合利用,2016,34(5):35-37.
Yi Deqiang,Zhang Zugang,Gan Maowu,et al.Optimization of ore slime beneficiation process for Meishan iron mine ore[J].China Resoures Comprehensive Utilization,2016,34(5):35-37.
[1] 胡文萱, 宋明春, 李杰, 董磊磊, 赵润芊, 张亮亮, 李健, 白天慧. 胶东金矿成矿物质来源:来自与金成矿有关地质单元金含量的约束[J]. 黄金科学技术, 2024, 32(5): 781-797.
[2] 周晓萍, 宋明春, 刘向东, 闫春明, 胡兆君, 苏海岗, 胡秉谦, 周宜康. 胶东三山岛金矿床巨斑花岗岩的形成时代、成因及对金成矿的启示[J]. 黄金科学技术, 2024, 32(5): 813-829.
[3] 郭忠磊, 崔嵛, 王春龙. 局部制冷降温技术在井下长距离掘进中的应用[J]. 黄金科学技术, 2024, 32(5): 916-925.
[4] 袁梓焜, 邵拥军, 刘清泉, 张毓策, 王智琳. 湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J]. 黄金科学技术, 2024, 32(4): 559-578.
[5] 陈桥, 姬龙雪, 董欣, 倪蓉, 李岩松, 佟琳琳, 杨洪英. 尼尔森选矿机富集机制对金矿分选效果的影响研究[J]. 黄金科学技术, 2024, 32(4): 685-693.
[6] 杨彦, 黄增保, 郭小刚, 许延龙, 颜华. 北祁连榆树沟山金矿区花岗闪长斑岩脉锆石U-Pb年龄、地球化学特征及其地质意义[J]. 黄金科学技术, 2024, 32(3): 387-399.
[7] 苏力, 朱海军, 谷守江, 杨兴科, 赵翌辰, 孙雪平, 何虎军, 韩珂, 张玉瑜, 谭江, 谢愿龙, 张龙, 高立博. 宁夏海原西华山地区金矿床地质地球化学特征及成因分析[J]. 黄金科学技术, 2024, 32(2): 191-206.
[8] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[9] 娄元林, 钱建利, 朱志平, 巴永, 杨明龙, 杨桃. 物化遥综合找矿方法在西藏隆子县拉九地区的应用[J]. 黄金科学技术, 2024, 32(2): 241-257.
[10] 张勇, 李水平, 荆鹏, 冯攀. 河南嵩县九仗沟金矿床地球化学特征与勘查模式[J]. 黄金科学技术, 2024, 32(2): 258-269.
[11] 王兴春, 邱海城, 李建平, 智庆全, 李华, 武军杰, 邓晓红, 吴琼. 辽东半岛五龙金矿外围电性特征及找矿意义[J]. 黄金科学技术, 2024, 32(1): 1-12.
[12] 张帅, 赵鑫, 彭祥玉, 王宇斌, 桂婉婷, 田家怡. 基于双隐含层BP神经网络的某金矿回收率预测研究[J]. 黄金科学技术, 2024, 32(1): 170-178.
[13] 史磊, 王西荣, 宁霄峰, 鹿峰宾, 许延波, 李亚楠. 山东南吕—欣木金矿床金的赋存状态及富集机制[J]. 黄金科学技术, 2024, 32(1): 41-54.
[14] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873-887.
[15] 吴荔, 匡文龙, 张志辉, 陈健龙, 张跃权, 刘兆阳, 黄英剑. 赣东北银山矿田铜矿石中伴生金赋存状态研究[J]. 黄金科学技术, 2023, 31(6): 888-899.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!