img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (2): 285-292.doi: 10.11872/j.issn.1005-2518.2020.02.070

• 采选技术与矿山管理 • 上一篇    下一篇

选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究

杨波1,3(),童雄2,3,谢贤2,3,王晓1,3()   

  1. 1.昆明学院,云南 昆明 650214
    2.昆明理工大学国土资源工程学院,云南 昆明 650093
    3.金属矿尾矿资源绿色综合利用国家地方联合工程研究中心,云南 昆明 650093
  • 收稿日期:2019-06-06 修回日期:2019-10-29 出版日期:2020-04-30 发布日期:2020-05-07
  • 通讯作者: 王晓 E-mail:yangbo2018kmu@163.com;664094443@qq.com
  • 作者简介:杨波(1987-),男,云南弥勒人,讲师,从事资源综合利用与环保方面研究工作。yangbo2018kmu@163.com
  • 基金资助:
    云南省教育厅科学研究基金项目“杂质元素取代对ZnS晶体结构及性质影响的DFT计算模拟研究”(2020J0521)

Study on the Gold Recovery from Flotation Tailings of a Refractory Gold Ores in Gansu Province by a Process Combining Mineral Processing and Metallurgy

Bo YANG1,3(),Xiong TONG2,3,Xian XIE2,3,Xiao WANG1,3()   

  1. 1.Kunming University,Kunming 650214,Yunnan,China
    2.Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China
    3.National & Local Joint Engineering Research Center for the Green and Comprehensive Utilization of Metallic Tailings Resource,Kunming 650093,Yunnan,China
  • Received:2019-06-06 Revised:2019-10-29 Online:2020-04-30 Published:2020-05-07
  • Contact: Xiao WANG E-mail:yangbo2018kmu@163.com;664094443@qq.com

摘要:

甘肃某金矿矿石金质量分数为4.3×10-6,锑、砷和碳依次为0.48%、0.37%和1.84%,属于典型的复杂难处理锑金矿,现场生产采用“重选—浮选—浮尾氰化”工艺回收金和锑。由于矿石中金嵌布粒度粗细不均,锑、砷和碳等杂质含量高,导致金总回收率仅为82%,金损失严重。为提高金回收率,采用电子探针对浮选尾矿中金的赋存状态进行了研究,在此基础上开展了提高金回收率的试验研究。试验结果表明:浮选尾矿中部分金以晶格金或包裹金形式赋存于毒砂、黄铁矿和辉锑矿等硫化矿物中,氰化浸出过程中难以与浸出液接触,是导致金损失过高的主要原因;氰化浸出前先对浮选尾矿进行分级,分级后对 +0.038 mm粗粒级进行再磨和活化浮选,强化对包裹金和晶格金的回收,然后再将粗粒浮选尾矿与-0.038 mm细粒级合并进行氰化浸出,金总回收率可提高约9个百分点,尾渣中金质量分数降低至0.3×10-6以下。

关键词: 锑金矿, 难处理金矿, 选冶联合, 浮选尾矿, 氰化浸渣, 电子探针

Abstract:

There are an abundant gold ores resource in China,and most of gold ores are belong to the refractory ores.The gold in the refractory ores is difficult to recovery by the leaching technology because of the fine dissemination particles in ores.Besides,the natural gold ores usually coexisted with pyrite,arsenopyrite and stibnite and is generally enclosed in these sulfide minerals.The conventional cyanide leaching is difficult to process this gold ore.In this paper,a gold ore from Gansu Province of China contains Au 4.3×10-6,Sb 0.48%,As 0.37% and C 1.84%,which belongs to a refractory gold.The recovery of gold is very low when the ore was directly leached by the cyanide leaching technology.In order to improve the recovery of gold,the gold was recovered in industrial scale by a process combined the gravity separation,froth flotation and cyanide leaching.However,the recovery rate of gold only is 82% due to the gold with a complex dissemination relationship in ores,the gold grade in the final cyanide leaching residue is approximately 0.8×10-6.In order to increase the recovery rate of gold,the occurrence state of gold in flotation tailings was investigated by electron probe microanalysis (EPMA),the flotation tests were conducted in laboratory scale based on the mineralogy results of the flotation tailings.The results indicated that gold in flotation tailings was mainly existed in the formation of lattice gold in arsenopyrite,pyrite and stibnite the or enclosed in these sulfide minerals with the fine dissemination particles size.When the flotation tailings was leached by cyanide solution,the gold enclosed in these sulfide minerals cannot contact effectively with the cyanide solution even if under the very fine grinding fineness.However,the recovery rate of gold was significantly improved when the flotation tailings were firstly sieved before cyanide leaching.After sieving,the coarse particles with the particles size of +0.038 mm was regrinded and increase the liberation degree of pyrite,arsenopyrite and stibnite.After that,the regrinding products was subject to the froth flotation again in order to recovery these sulfide mineral,the tailings after flotation were subjected to the cyanide leaching together with the -0.038 mm fine particles.The recovery rate of gold is obviously increased by 81.3% to 90.21% by using this process,the grade of gold in the final leaching residue is less than 0.3×10-6.The experimental result is helpful for the improvement of industrial production process.

Key words: bearing-Sb gold ores, refractory gold ore, technology combining mineral processing and metal-lurgy, flotation tailings, cyanide leaching residue, EPMA

中图分类号: 

  • TD953

表1

试样化学多元素分析结果"

元素质量分数元素质量分数
Au2.8As0.39
Fe3.35SiO256.94
S0.29Al2O313.93
MgO2.26CaO6.8

图1

主要硫化矿物的电子探针背散射图像(a)毒砂;(b)黄铁矿;(c)辉锑矿;Ars-毒砂;Py-黄铁矿;Qz-石英;Sti-辉锑矿"

图2

浮选试验流程"

表2

再磨细度对金回收率的影响"

磨矿细度(-0.048 mm占比)/%产品产率/%金品位/×10-6回收率/%
38.4精矿5.0720.4647.64
尾矿94.931.2052.36
给矿100.002.18100.00
50.0精矿5.7318.5650.67
尾矿94.271.1049.33
给矿100.002.10100.00
60.0精矿5.4619.9650.70
尾矿94.541.1249.30
给矿100.002.15100.00
75.0精矿6.1616.8047.88
尾矿93.841.2052.12
给矿100.002.16100.00

表3

不同种类抑制剂对金回收率的影响"

抑制剂种类

[用量/(×10-6)]

产品产率/%

金品位

/×10-6

回收率/%
Na2CO3(800)精矿5.7318.5650.67
尾矿94.271.1049.33
给矿100.002.10100.00

(800+800)

Na2CO3+Na2SiO3

精矿6.8216.9955.15
尾矿93.181.0144.85
给矿100.002.10100.00
(NaPO36(800)精矿5.4619.8350.80
尾矿94.541.1149.20
给矿100.002.13100.00
(NaPO36+Na2CO3(800+800)精矿5.1221.7553.04
尾矿94.881.0446.96
给矿100.002.10100.00

图3

活化剂对金回收率的影响"

表4

捕收剂用量对金回收率的影响"

捕收剂(丁基黄药+丁铵黑药)用量/(×10-6)产品产率/%

金品位

/(×10-6)

回收率/%
40 + 0精矿6.2419.2054.48
尾矿93.761.0745.52
给矿100.002.09100.00
40 + 30精矿7.1017.2057.33
尾矿92.900.9842.67
给矿100.002.13100.00
60 + 30精矿7.6316.4058.77
尾矿92.370.9541.23
给矿100.002.13100.00
80 + 60精矿7.9615.7058.66
尾矿92.040.9641.34
给矿100.002.10100.00
120 + 60精矿8.4114.8058.47
尾矿91.590.9741.53
给矿100.002.11100.00

图4

+0.038 mm粗粒级闭路浮选试验流程"

表5

+0.038mm粗粒级闭路浮选试验结果"

产品产率/%金品位/(×10-6)回收率/%

回收率/%

(对浮选尾矿)

精矿2.4640.6948.2219.34
尾矿97.541.1051.7820.76
给矿100.002.07100.0040.10

图5

NaCN用量对金浸出率的影响"

图6

液固比对金浸出率的影响"

1 孙言鹏.某难处理卡林型金矿选冶工艺研究[D].北京:中国科学院大学,2018.
Sun Yanpeng.Study on the Processing Technology of a Complex Refractory Carlin Gold Mine[D].Beijing:University of Chinese Academy of Science,2018.
2 王帅,李超,李宏煦.难浸金矿预处理技术及其研究进展[J].黄金科学技术,2014,22(4):129-134.
Wang Shuai,Li Chao,Li Hongxu.Research progress of pretreatment technologies of refractory gold ores[J].Gold Science and Technology,2014,22(4):129-134.
3 贾玉娟,王晓辉,程伟,等.难处理金矿非氰浸金研究进展[J].工程科学学报,2019,41(3):307-315.
Jia Yujuan,Wang Xiaohui,Cheng Wei,et al.Research progress on non-cyanide leaching of refractory gold ores [J].Chinese Journal of Engineering,2019,41(3):307-315.
4 宋言,杨洪英,佟琳琳,等.甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J].黄金科学技术,2018,26(2):241-247.
Song Yan,Yang Hongying,Tong Linlin,et al.Experimental study on bacterial oxidation-cyanidation of a complex refractory gold mine in Gansu Province[J].Gold Science and Technology,2018,26(2):241-247.
5 邓文,伍荣霞,刘志成,等.焙烧预氧化—硫代硫酸盐浸出某难处理金精矿[J].矿冶工程,2017,37(3):114-117.
Deng Wen,Wu Rongxia,Liu Zhicheng,et al.Treatment of refractory gold concentrate by oxidation roasting-thiosulfate leaching[J].Mining and Metallurgical Engineering,2017,37(3):114-117.
6 李超,李宏煦,杨勰,等.某难浸金矿的次氯酸盐法直接浸金试验研究[J].黄金科学技术,2014,22(4):108-112.
Li Chao,Li Hongxu,Yang Xie,et al.Experimental study on the leaching of gold from a refractory gold concentrate by chloride-hypochlorite solution[J].Gold Science and Technology,2014,22(4):108-112.
7 刘伟锋,黄克洪,杨天足,等.高砷锑金矿湿法选择性浸出锑[J].中国有色金属学报,2018,28(1):205-211.
Liu Weifeng,Huang Kehong,Yang Tianzu,et al.Selective leaching of antimony from high-arsenic antimony-gold concentrate[J].The Chinese Journal of Nonferrous Metals,2018,28(1):205-211.
8 田润青,刘云华,田民民,等.陕西某微细粒浸染型金矿选矿试验研究[J].黄金科学技术,2016,24(6):102-106.
Tian Runqing,Liu Yunhua,Tian Minmin,et al.Mineral processing experiments on fine-disseminated gold ore from Shaanxi Province[J].Gold Science and Technology,2016,24(6):102-106.
9 刘涛.卡林型低品位难选金矿选矿工艺研究[D].南昌:江西理工大学,2018.
Liu Tao.Experimental Research on Mineral Processing Technology of Carlin-type Refractory Gold Ores with Low Grade[D].Nanchang:Jiangxi University of Science and Technology,2018.
10 明平田,蒋光山.青海省独立型岩金矿选冶技术现状和研究进展[J].黄金科学技术,2018,26(5):622-628.
Ming Pingtian,Jiang Guangshan.Present situation and research progress of independent rock gold mine in Qinghai Province[J].Gold Science and Technology,2018,26(5):622-628.
11 Wang Q,Hu X Z,Zi F T,et al.Extraction of gold from refractory gold ore using bromate and ferric chloride solution[J].Minerals Engineering,2019,136:89-98.
12 牛会群,佟琳琳,衷水平,等.卡林型金矿碳质物特征及其去碳方法研究现状[J].有色金属(冶炼部分),2019(6):33-39.
Niu Huiqun,Tong Linlin,Zhong Shuiping,et al.Research status on carbonaceous matter characteristic and decarbonization of carlin-type gold ores[J].Nonferrous Metals(Extractive Metallurgy),2019(6):33-39.
13 De Carvalho L C,Da Silva S R,Giardini R M N,et al.Bio-oxidation of refractory gold ores containing stibnite and gudmundite[J].Environmental Technology and Innovation,2019,15:100390.
14 Liu X L,Li Q,Zhang Y,et al.Improving gold recovery from a refractory ore via Na2SO4 assisted roasting and alkaline Na2S leaching[J].Hydrometallurgy,2019,185:133-141.
15 郭金溢,蔡创开,丁文涛,等.甘肃某难处理金矿预处理—氰化试验研究[J].矿产综合利用,2018(2):57-60.
Guo Jinyi,Cai Chuangkai,Ding Wentao,et al.Experimental study on pretreatment-cyanide of a refractory gold ore in Gansu Province[J].Multipurpose Utilization of Mineral Resources,2018(2):57-60.
16 殷书岩,赵鹏飞,李少龙,等.难处理金矿预处理技术的选择[J].中国有色冶金,2018,47(2):30-34.
Yin Shuyan,Zhao Pengfei,Li Shaolong,et al.Selection of pretreatment technology of refractory gold ore[J].China Nonferrous Metallurgy,2018,47(2):30-34.
17 刘淑杰,代淑娟,张作金,等.国内氰化法浸出金矿中金的研究进展[J].贵金属,2019,40(2):88-94.
Liu Shujie,Dai Shujuan,Zhang Zuojin,et al.Research progress in gold leaching from gold ores by cyanidation in China[J].Precious Metals,2019,40(2):88-94.
18 张红新,李洪潮,郭珍旭.利用组合抑制剂提高高硫低品位金矿浮选精矿品位的研究[J].矿业研究与开发,2015,35(1):43-46.
Zhang Hongxin,Li Hongchao,Guo Zhenxu.Study on improving flotation concentrate grade of the low-grade gold ore with high sulfur content by combinational inhibitors[J].Mining Research and Development,2015,35(1):43-46.
19 苏超,申培伦,李佳磊,等.黄铁矿浮选的抑制与解抑活化研究进展[J].化工进展,2019,38(4):1921-1929.
Su Chao,Shen Peilun,Li Jialei,et al.A review on depression and derepression of pyrite flotation[J].Chemical Industry and Engineering Progress,2019,38(4):1921-1929.
20 宋国君,邓久帅,先永骏,等.黄铁矿解抑活化机理研究现状及进展[J].矿物学报,2017,37(3):328-332.
Song Guojun,Deng Jiushuai,Xian Yongjun,et al.Derepression and activation of pyrite:A review[J].Acta Mineralogica Sinica,2017,37(3):328-332.
21 董大刚.组合捕收剂在矿物浮选中的应用及发展前景[J].中国钨业,2017,32(4):29-34.
Dong Dagang.Application and development potential of the mixed collectors in minerals flotation[J].China Tungsten Industry,2017,32(4):29-34.
22 徐龙华,田佳,巫侯琴,等.组合捕收剂在矿物表面的协同效应及其浮选应用综述[J].矿产保护与利用,2017(2):107-112.
Xu Longhua,Tian Jia,Wu Houqin,et al.A review on the synergetic effect of the mixed collectors on mineral surface and its application in flotation[J].Conservation and Utilization of Mineral Resources,2017(2):107-112.
[1] 陈国民, 杨洪英, 陈彦臻, 张广积. 金矿预氧化处理过程中砷的转化[J]. 黄金科学技术, 2023, 31(5): 865-872.
[2] 彭科淇, 周瑞仙. 贵州某卡林型金矿精锐微泡浮选生产实践[J]. 黄金科学技术, 2023, 31(4): 689-697.
[3] 杨玮,叶金秋,龙涛,邓莎,王文涛. 选冶联合回收某高硫黄金尾矿中金的试验研究[J]. 黄金科学技术, 2023, 31(1): 113-122.
[4] 马德锡,任喜荣,宋炯,张保卫. 高密度电法在北巴颜喀拉山夺尔贡玛锑金矿点找矿中的应用[J]. 黄金科学技术, 2022, 30(4): 498-507.
[5] 王国彬,蓝卓越,王瑞康,赵清平,杨迪,李博琦. 银含量对方铅矿浮选的影响及其机理研究进展[J]. 黄金科学技术, 2021, 29(5): 749-760.
[6] 吴天骄,曹欢,牛芳银,靳建平,王海军,陈军,卫亚儒. 某含碳微细粒难处理金矿浮选提金工艺研究[J]. 黄金科学技术, 2021, 29(5): 761-770.
[7] 杨波,王晓,解永刚,谢贤. 青海某难浸金矿的工艺矿物学研究[J]. 黄金科学技术, 2021, 29(3): 467-475.
[8] 高世雄,陈国宝,杨洪英,马鹏程. 含锑金矿预处理脱锑技术的研究进展[J]. 黄金科学技术, 2020, 28(6): 792-799.
[9] 谢雄辉. 陇南紫金难处理金精矿工艺矿物学研究[J]. 黄金科学技术, 2019, 27(6): 950-956.
[10] 欧阳臻,陈艺锋,胡宇杰,唐朝波,陈永明,叶龙刚. 金锑矿还原固硫焙烧—选冶联合提取研究[J]. 黄金科学技术, 2019, 27(3): 449-457.
[11] 张蕾蕾, 张静, 王琦崧, 陈良, 陈叙安. 熊耳山地区槐树坪金矿床黄铁矿特征及其地质意义[J]. 黄金科学技术, 2018, 26(4): 481-491.
[12] 杜胜江, 温汉捷, 秦朝建, 卢树藩, 燕永锋, 杨光树. 滇东南老君山矿集区三保锰银矿床碳氧同位素特征及其意义[J]. 黄金科学技术, 2018, 26(3): 261-269.
[13] 宋言, 杨洪英, 佟琳琳, 马鹏程, 金哲男. 甘肃某复杂难处理金矿细菌氧化—氰化实验研究[J]. 黄金科学技术, 2018, 26(2): 241-247.
[14] 侯江龙,李建康,王登红,陈振宇,代鸿章,刘丽君. 四川甲基卡锂矿区花岗岩体中黑云母的地球化学特征及其地质意义[J]. 黄金科学技术, 2017, 25(6): 1-8.
[15] 郑慕婷,张术根,贺忠春. 湖南康家湾金银多金属矿床金银赋存状态及其与成矿演化的关系[J]. 黄金科学技术, 2017, 25(6): 31-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!