img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (3): 372-379.doi: 10.11872/j.issn.1005-2518.2020.03.194

• 采选技术与矿山管理 • 上一篇    下一篇

基于综合决策云模型的围岩稳定性分级方法研究

周科平(),侯霄峰(),林允   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2019-12-05 修回日期:2020-03-12 出版日期:2020-06-30 发布日期:2020-07-01
  • 通讯作者: 侯霄峰 E-mail:kpzhou@vip.163.com;houxiaofeng1994@sina.com
  • 作者简介:周科平(1964-),男,湖南衡阳人,教授,博士生导师,从事矿业工程方面的研究工作。kpzhou@vip.163.com
  • 基金资助:
    国家自然科学基金项目“高寒冻融区露天矿岩质边坡裂隙网络扩展性多尺度时变演化机制”(51774323)

Research on Classification Method of Surrounding Rock Stability Based on Comprehensive Decision Cloud Model

Keping ZHOU(),Xiaofeng HOU(),Yun LIN   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2019-12-05 Revised:2020-03-12 Online:2020-06-30 Published:2020-07-01
  • Contact: Xiaofeng HOU E-mail:kpzhou@vip.163.com;houxiaofeng1994@sina.com

摘要:

地下工程围岩稳定性分析关系到地下工程的安全,围岩的稳定与否直接决定着地下工程的成败,因此开展地下工程围岩稳定性评价具有十分重要的意义。基于云理论,选取岩石单轴饱和抗压强度、完整性系数、岩石基本质量指标、地下水影响修正系数和软弱结构面产状影响系数作为围岩稳定性分级指标,综合运用DEMATEL决策模型和熵权法获取上述指标体系的组合权重,并选取公路隧道工程20组实测数据作为学习样本,建立围岩稳定性分级的综合决策云模型,将其应用于小红石砬子玉石矿5组工程围岩的稳定性分级实例中。结果表明:综合决策云模型判别结果与实际情况相吻合,判别准确率可达80%,且优于K-最邻近算法和随机森林算法的判别结果,说明所建立的综合决策云模型在工程实际中具有一定的应用价值,为围岩稳定性分级提供了新思路。

关键词: 围岩, 稳定性分级, 云模型, DEMATEL决策模型, 熵权法

Abstract:

The stability analysis of surrounding rock of underground engineering is related to the safety of underground engineering.The stability of surrounding rock directly determines the success or failure of the underground engineering.Therefore,it is of great significance to carry out the stability evaluation of surrounding rock of underground engineering.Based on cloud theory,the rock uniaxial saturation compressive strength,integrity coefficient,basic rock quality index,groundwater impact correction coefficient,and weak structure surface condition impact coefficient were selected as the surrounding rock stability classification indicators.The combination weight of the above index system was obtained by using DEMATEL decision-making model and entropy weight method,and then 20 sets of measured data of highway tunnel engineering were selected as learning samples to establish a comprehensive decision cloud model for surrounding rock stability classification.It is applied to an example of surrounding rock stability classification for 5 groups of Xiaohongshilazi jade mine.The results show that the discrimination result of the comprehensive decision cloud model is consistent with the actual situation,and the discrimination accuracy can reach 80%,which is better than the discrimination results of the K-nearest neighbor algorithm and the random forest algorithm,indicating that the comprehensive decision cloud model established in this paper has certain application value in engineering practice and can provide a new idea for stability classification of surrounding rocks.

Key words: surrounding rocks, stability classification, cloud model, DEMATEL decision model, entropy weight method

中图分类号: 

  • TD26

表1

围岩稳定性指标分级标准"

类别Rc/MPaKvRQD/%K1K2
>2001.00~0.7590~1000~0.20~0.1
100~2000.50~0.7575~900.2~0.40.1~0.2
50~1000.30~0.5050~750.4~0.60.2~0.4
25~500.15~0.3025~500.6~0.80.4~0.5
0~250~0.150~250.8~1.0>0.5

表2

标准化云模型数字特征"

类别ExEnHe
0.10.08490.001
0.30.08490.001
0.50.08490.001
0.70.08490.001
0.90.08490.001

图1

标准化云模型"

表3

隧道围岩分析数据"

样本Rc/MPaKvRQD/%K1K2实际级别
138.10.1618.700.3
237.10.1827.40.20.1
338.00.4590.00.40.1
438.00.3591.00.20.2
59.20.3075.00.40.2
617.40.3438.400.2
727.50.3739.700.2
856.80.5058.900
972.30.5362.800
1067.50.4558.900.2
1182.30.6679.800
1256.10.2941.500.2
1315.80.2739.300.1
1449.20.1929.800.6
1538.00.8093.00.30.2
1621.40.1725.90.30.1
1738.00.6092.00.20.2
1865.90.5869.300.2
1954.30.3033.60.10
2047.10.2527.50.20.3

表4

各评价指标组合权重"

指标Rc/MPaKvRQD/%K1K2
hi0.20660.22900.22550.17690.1620
wj0.08580.06660.15720.49380.1966
λi0.09450.08120.18890.46560.1698

表5

围岩稳定性分级结果"

样本综合确定度本文结果现场级别
U()U()U()U()U()
10.22900.01000.21310.10410.2931
20.12330.04670.18820.14360.3777
30.26930.04520.28700.14330.0598
40.13370.13090.33540.24410.0181
50.05030.20550.02380.15070.2372
60.23460.12050.03580.44270.2371
70.23320.12050.06310.58330.0676
80.31420.22420.44670.01180
90.29790.20900.36780.00280
100.28020.25380.41090.05240.0001
110.31410.42370.001900
120.23480.26160.08280.33250.1251
130.35100.03720.00880.28740.3697
140.22950.03650.15340.05080.4360
150.13730.12200.20350.19630.0262
160.12370.03800.00230.16800.5104
170.11870.16680.24160.30350.0008
180.27670.65320.08740.00020
190.18200.21010.07200.25500.1920
200.00010.03620.41810.08910.4258

表6

小红石砬子玉石矿工程实测数据和围岩分级结果"

序号Rc/MPaKvRQD/%K1K2综合确定度

本文

结果

KNNRF

现场

级别

U()U()U()U()U()
137.100.3790.00.10.20.13080.39370.17780.07500.0795
256.100.4560.000.10.30210.04530.37130.01770
323.280.1925.90.300.08000.000600.00300.4129
454.300.3436.80.10.10.18380.25800.33780.08210.1584
527.500.3539.30.10.20.00630.30080.11750.15450.3730
1 钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程学报,2012,31(10):1945-1956.
Qian Qihu.Challenges faced by underground projects construction safety and countermeasures[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1945-1956.
2 薛黎明,李长明,郑志学,等,基于FP-tree与云变换的围岩稳定性评价指标体系研究[J].铁道标准设计,2019,63(7):102-107.
Xue Liming,Li Changming,Zheng Zhixue,et al.The index system of stability of surrounding rock based on PF-tree and cloud transform[J].Railway Standard Design,2019,63(7):102-107.
3 何发亮,王石春.铁路隧道围岩分级方法研究及发展[J].铁道工程学报,2005(增1):392-397.
He Faliang,Wang Shichun.Research and development on the method of rockmasses classification in railway tunnel[J].Journal of Railway Engineering Society,2005(Supp.1):392-397.
4 焦春茂,吕爱钟.粘弹性圆形巷道支护结构上的荷载及其围岩应力的解析解[J].岩土力学,2004(增1):103-106.
Jiao Chunmao,Aizhong Lü.Analytical solution of loads on supporting structur for circular tunnel and stress in viscoelastic surrounding rock[J].Rock and Soil Mechanics,2004(Supp.1):103-106.
5 杜时贵,周庆良,孙有法.RQD在隧道围岩分类中的应用[J].公路,1996(10):21-24.
Du Shigui,Zhou Qingliang,Sun Youfa.Application of RQD in tunnel surrounding rock classification[J].Highway,1996(10):21-24.
6 师伟,史彦文,韩常领,等.RMR围岩分级法与中国公路隧道围岩分级方法对比[J].中外公路,2009,29(4):383-386.
Shi Wei,Shi Yanwen,Han Changling,et al.Comparison between RMR surrounding rock classification method and China highway tunnel surrounding rock classification method[J].Journal of China & Foreign Highway,2009,29(4):383-386.
7 刘德峰,刘长武,陈宏臻.特大采空区围岩稳定性评价[C]//2015(第六届)中国矿业科技大会.北京:冶金工业出版社,2015.
Liu Defeng,Liu Changwu,Chen Hongzhen.Evaluation of surrounding rock stability in extra large goaf[C]//2015(Sixth)China Mining Technology Conference.Beijing:Metallurgical Industry Press,2015.
8 贾超,肖树芳,刘宁.可拓学理论在洞室岩体质量评价中的应用[J].岩石力学与工程学报,2003,22(5):751-756.
Jia Chao,Xiao Shufang,Liu Ning.Application of extenics theory to evaluation of tunnel rock quality[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(5):751-756.
9 盛继亮.地下工程围岩稳定性模糊综合评价模型研究[J].岩石力学与工程学报,2003,22(增1):2418-2421.
Sheng Jiliang.Research on fuzzy synthetic evaluation model for the stability of surrounding rock of underground project[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(Supp.1):2418-2421.
10 Zhang W,Li X B,Gong F Q,et al.Stability classification model of mine-lane surrounding rock based on distance discriminant analysis method[J].Journal of Central South University of Technology,2008,15(1):117-120.
11 Wang D D,Qiu G Q,Xie W B,et al.Deformation prediction model of surrounding rock based on GA-LSSVM-markov[J].Natural Science,2012,4(2):85-90.
12 Shi S S,Zhao R J,Li S C,et al.Intelligent prediction of surrounding rock deformation of shallow buried highway tunnel and its engineering application[J].Tunnelling and Underground Space Technology,2019,90:1-11.
13 宫凤强,李夕兵,高科.地下工程围岩稳定性分类的突变级数法研究[J].中南大学学报(自然科学版),2008,39(5):1081-1086.
Gong Fengqiang,Li Xibing,Gao Ke.Catastrophe progression method for stability classification of underground engineering surrounding rock[J].Journal of Central South University(Science and Technology),2008,39(5):1081-1086.
14 胡建华,尚俊龙,雷涛.基于RS-TOPSIS法的地下工程岩体质量评价[J].中南大学学报(自然科学版),2012,43(11):4412-4419.
Hu Jianhua,Shang Junlong,Lei Tao.Rock mass quality evaluation of underground engineering based on RS-TO-PSIS method[J]. Journal of Central South University(Science and Technology),2012,43(11):4412-4419.
15 蔡广奎.围岩稳定性分类的BP网络模型研究[D].南京:河海大学,2001.
Cai Guangkui.Study of the BP Neural Network on the Stability Classification of Surrounding Rocks[D].Nanjing:Hohai University,2001.
16 赖永标,乔春生,刘开云,等.支持向量机在围岩稳定性分类中的应用[J].水利学报,2006(9):1092-1096.
Lai Yongbiao,Qiao Chunsheng,Liu Kaiyun,et al.Application of support vector machine in classification of surrounding rock stability[J].Journal of Hydraulic Enginee-ring,2006(9):1092-1096.
17 李德毅,刘常昱,杜鹢,等.不确定性人工智能[J].软件学报,2004(11):1583-1594.
Li Deyi,Liu Changyu,Du Yi,et al.Artificial intelligence with uncertainty[J].Journal of Software,2004(11):1583-1594.
18 李志超,周科平,林允.基于RS-云模型的硫化矿石自燃倾向性综合评价[J].中国安全生产科学技术,2017,13(9):126-131.
Li Zhichao,Zhou Keping,Lin Yun.Comprehensive evaluation on spontaneous combustion tendency of sulfide ore based on RS-cloud model[J].Journal of Safety Science and Technology,2017,13(9):126-131.
19 史雪梅,李德毅,孟海军.隶属云和隶属云发生器[J].计算机研究与发展,1995(6):15-20.
Shi Xuemei,Li Deyi,Meng Haijun.Membership clouds and membership cloud generators[J].Journal of Computer Research and Development,1995(6):15-20.
20 雷武林,周华龙,姜思阳,等.正态云模型在煤巷围岩稳定性分类中的应用[J].煤矿安全,2017,48(5):194-197.
Lei Wulin,Zhou Hualong,Jiang Siyang,et al.Application of normal cloud model in surrounding rock classification of coal roadway[J].Safety in Coal Mines,2017,48(5):194-197.
21 田玉刚,杜渊会,覃东华,等.基于数据场和云模型的洪水灾害风险等级评估[J].中国安全科学学报,2011,21(8):158-163.
Tian Yugang,Du Yuanhui,Qin Donghua,et al.Flood risk evaluation methods based on date field and cloud model[J].Journal of Safety Science and Technology,2011,21(8):158-163.
22 陈昌彦,王贵荣.各类岩体质量评价方法的相关性探讨[J].岩石力学与工程学报,2002,21(12):1894-1900.
Chen Changyan,Wang Guirong.Discussion on the interrelation of various rock mass quality classification systems at home and abroad[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(12):1894-1900.
23 牟瑞芳,蔡其杰.基于云模型及粗糙集理论的围岩稳定性分级方法研究[J].安全与环境学报,2018,18(4):1251-1257.
Ruifang Mou,Cai Qijie.Stability evaluation for the surrounding rock structure based on the normal cloud model and the rough set theory[J].Journal of Safety and Environment,2018,18(4):1251-1257.
24 梁国利.潼荣高速公路曾家山隧道围岩分级及稳定性评价[D].北京:中国地质大学(北京),2017.
Liang Guoli.The Classification and Stability Evaluation of the Surrounding Rock of Chongqing Tongrong High-speed Zengjiashan Tunnel[D].Beijing:China University of Geosciences (Beijing),2017.
25 李科.基于熵权—云模型的隧道围岩分级方法研究[J].现代隧道技术,2018,55(4):69-75,86.
Li Ke.Classification method for tunnel surrounding rock based on the entropy-cloud model[J].Modern Tunnelling Technology,2018,55(4):69-75,86.
26 张和平,陈齐海.基于因子分析-DEMATEL定权法的期刊综合评价研究[J].情报杂志,2017,36(11):180-185.
Zhang Heping,Chen Qihai.Research on journal comprehensive evaluation based on factor analysis and DEMATEL weight method[J].Journal of Intelligence,2017,36(11):180-185.
27 王清源,潘旭海.熵权法在重大危险源应急救援评估中的应用[J].南京工业大学学报(自然科学版),2011,33(3):87-92.
Wang Qingyuan,Pan Xuhai.Entropy method for major hazards emergency rescue[J].Journal of Nanjing Tech University (Natural Science Edition),2011,33(3):87-92.
28 李刚,李建平,孙晓蕾,等.主客观权重的组合方式及其合理性研究[J].管理评论,2017,29(12):17-26,61.
Li Gang,Li Jianping,Sun Xiaolei,et al.Research on a combined method of subjective-objective weighing and the its rationality[J].Management Review,2017,29(12):17-26,61.
29 江勇顺.山区高速公路隧道围岩分级方法及应用研究[D].成都:成都理工大学,2007.
Jiang Yongshun.The Methods of Surrounding Rock Classification and Their Application in the Expressway Tunnel of Mountainous Area[D].Chengdu:Chengdu University of Technology,2007.
30 Amendolia S R,Cossu G,Ganadu M L,et al.A comparative study of K-nearest neighbour,support vector machine and multi-layer perceptron for thalassemia screening[J].Chemometrics and Intelligent Laboratory Systems,2003,69(1/2):13-20.
31 Verikas A A,Gelzinis A,Bacauskiene M,et al.Mining data with random forests:A survey and results of new tests[J].Pattern Recognition,2010,44(2):330-349.
[1] 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108.
[2] 甘会莲, 蒋新闻, 陈志伟, 乔永昕, 陈淑华, 王建国. 一体化聚能水压爆破技术在软弱围岩隧道的应用[J]. 黄金科学技术, 2023, 31(6): 944-952.
[3] 张卫中,袁威,康钦容,夏缘帝,李梦玲. 基于综合权重—模糊物元法的岩溶地区隧道围岩质量评价[J]. 黄金科学技术, 2023, 31(3): 487-496.
[4] 方博扬,赵国彦,马举,陈立强,简筝. Adaboost集成学习优化的巷道围岩松动圈预测研究[J]. 黄金科学技术, 2023, 31(3): 497-506.
[5] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[6] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[7] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[8] 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163.
[9] 王成龙,侯成录,杨尚欢,赵兴东. 千米深井高应力破碎围岩控制技术[J]. 黄金科学技术, 2020, 28(6): 885-893.
[10] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
[11] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[12] 李光,马凤山,郭捷,赵海军,寇永渊,兰剑,赵金田. 高地应力破碎围岩巷道变形破坏特征及支护方式研究[J]. 黄金科学技术, 2020, 28(2): 238-245.
[13] 戚伟,李威,李振阳,赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270.
[14] 陈洲,左宇军. 戈塘金矿房柱法开采围岩稳定性分析[J]. 黄金科学技术, 2020, 28(2): 271-277.
[15] 胡建华,徐朔寒,徐泽林,韩磊. 城市地下矿山采矿方法的数值与熵权耦合优选[J]. 黄金科学技术, 2019, 27(4): 513-521.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!