img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 479-496.doi: 10.11872/j.issn.1005-2518.2020.04.050

• 矿产勘查与资源评价 • 上一篇    下一篇

广西贵港六梅金矿的成因类型及找矿意义

陈港1(),陈懋弘1(),马克忠1,葛锐2,郭申祥2,吴启强3,原其生4   

  1. 1.中国地质科学院矿产资源研究所,自然资源部成矿作用与资源评价重点实验室,北京 100037
    2.中国地质大学(北京)地球科学与资源学院,北京 100083
    3.广西壮族自治区第六地质队,广西 贵港 537100
    4.广西壮族自治区二七三地质队,广西 贵港 537100
  • 收稿日期:2020-03-03 修回日期:2020-04-18 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 陈懋弘 E-mail:cccg0105@163.com;mhchen666@163.com
  • 作者简介:陈港(1997-),男,湖北汉川人,硕士研究生,从事矿物学、岩石学和矿床学研究工作。cccg0105@163.com
  • 基金资助:
    国家自然科学基金项目“贵州泥堡卡林型金矿成因:成矿构造学、年代学和微区矿物学制约”(41572072);国家重点基础研究发展计划“973”课题“改造型花岗岩钨锡稀有金属成矿作用”(2012CB416704);广西地矿局部门预算前期地质勘查项目“广西大瑶山地区多期次岩浆活动及成矿作用研究”(桂地矿地[2014]17号)

Genetic Types and Prospecting Significance of Liumei Gold Deposit,Guigang,Guangxi Province,China

Gang CHEN1(),Maohong CHEN1(),Kezhong MA1,Rui GE2,Shenxiang GUO2,Qiqiang WU3,Qisheng YUAN4   

  1. 1.NLR Key Laboratory of Metallogeny and Mineral Assessment,Institute of Mineral Resources,Chinese Academy Geological Sciences,Beijing 100037,China
    2.School of Earth Science and Mineral Resources,China University of Geosciences(Beijing),Beijing 100083,China
    3.No. 6 Geological Team of Guangxi,Guigang 537100,Guangxi, China
    4.No. 273 Geological Team of Guangxi,Guigang 537100,Guangxi, China
  • Received:2020-03-03 Revised:2020-04-18 Online:2020-08-31 Published:2020-08-27
  • Contact: Maohong CHEN E-mail:cccg0105@163.com;mhchen666@163.com

摘要:

六梅金矿床位于广西贵港市大平天山岩体东北部,矿体赋存于寒武系黄洞口组细碎屑岩中,受高角度断裂构造的控制。根据矿物组合与脉体的切割关系,将矿床热液活动过程划分为4个阶段:石英—黄铁矿阶段(Ⅰ),黄铁矿—毒砂—石英阶段(Ⅱ),方铅矿—闪锌矿—黄铜矿—(砷)黝铜矿—铁白云石—石英阶段(Ⅲ),石英—铁白云石阶段(Ⅳ),其中Ⅱ阶段为主要的成矿阶段。载金矿物主要为毒砂和(砷)黄铁矿,EPMA分析结果显示金主要以“不可见”的次显微—超次显微包体金形式存在。流体包裹体测试结果表明:石英或方解石中的包裹体以气液两相为主,主成矿阶段温度平均为181 ℃,平均盐度[w(NaCl)]为9.36%,密度为0.946 g/cm3,显示成矿流体为低温、低盐度、低密度流体。H、O同位素组成(δD值介于-73‰~-57‰之间,δ18OH2O值介于2.3‰~6.1‰之间)显示成矿流体与岩浆热液有关,且后期有大气降水混入;载金硫化物δ34SV-CDT值介于-0.8‰~0.5‰之间,指示成矿物质来源于岩浆。上述特征表明六梅金矿与典型的卡林型金矿有较大区别,特别是缺乏卡林型金矿特有的低温矿物组合(雌黄—雄黄—辰砂),相反却含有较多的贱金属矿物(方铅矿—闪锌矿—黄铜矿),更接近于与岩浆活动有关的远端低温热液矿床。结合区域上矿床和岩体的空间分布特征,提出了(次火山岩)斑岩型金矿(龙头山金矿)—矽卡岩型银铅锌矿(头闸银铅锌矿)—远端低温热液型金矿(六梅金矿)的大平天山岩浆热液系统成矿模式。该模式暗示着六梅金矿往深部及向大平天山岩体方向应该存在中温热液脉状和矽卡岩型银铅锌矿床。该文建立的岩浆热液成矿系统模型对大瑶山地区类似矿床的找矿具有重要指导意义。

关键词: 岩浆热液成矿系统, 毒砂, 黄铁矿, 不可见金, 远端低温热液矿床, 六梅金矿, 广西贵港

Abstract:

Liumei gold deposit is located in the northeast of Dapingtianshan stock,Guigang,Guangxi Province.According to mineral composition and pulse cutting relation,the deposit hydrothermal activity process is divided into four stages:(1)quartz-pyrite stage;(2)pyrite arsenopyrite-quartz stage;(3)galena-sphalerite-chalcopyrite-tennantite-ankerite-quartz stage;(4)quartz-ankerite stage.The second stage as the main metal-logenic stage.The main gold carriers are arsenopyrite and pyrite. EPMA analysis shows that Au mainly exists in the form of “invisible” submicroscopic-supermicroscopic inclusion gold.Fluid inclusion test shows that the inclusions in quartz or calcite are mainly gas-liquid two-phase,the average temperature in the main metallogenic stage is about 181 ℃,the average salinity [w(NaCl)] is 9.36%,and the density is 0.946 g/cm3, indicating that the ore-forming fluid is low-temperature,low-salinity,low-density fluid.The hydrogen and oxygen isotopic composition (δD value between -73‰~-57‰,δ18OH2O value between 2.3‰~6.1‰) indicates that the ore-forming fluid may be related to the magmatic hydrothermal fluid and was mixed by meteoric precipitation in the later period.The value of the gold-bearing δ34S is between -0.8‰ and 0.5‰,indicating that the ore-forming material comes from magmatic rock.These features indicate that Liumei gold deposit is very different from typical carlin-type gold deposits,especially it is lack of characteristic of the low temperature carlin-type gold mineral combination (orpiment-realgar-cinnabar),but instead contain more base metals mineral galena-sphalerite-chalcopyrite),so it is closer to related to magmatic activities of distal low temperature hydrothermal deposit.Based on the spatial distribution characteristics of regional ore deposits and rock masses,the metallogenic model of Dapingtianshan magmatic hydrothermal system for porphyry gold and copper deposits (Longtoushan gold deposit),skarn-type silver lead and zinc deposits (Touzha Ag-Pb-Zn deposit) and distal low temperature hydrothermal gold deposits (Liumei gold deposit) is proposed.The model implies that there should be intermediate temperate hydrothermal vein and skarn type silver-lead-zinc deposits deep in Liumei gold deposit and in the direction of Dapingtianshan rock mass.The model of magmatic hydrothermal metallogenic system established in this paper has important guiding significance for similar ore deposits in Dayaoshan area.

Key words: magmatic hydrothermal metallogenic system, arsenopyrite, pyrite, invisible gold, distal low temperature magmatic-hydrothermal deposit, Liumei gold deposit, Guigang City,Guangxi

中图分类号: 

  • P618.51

图1

六梅金矿在大瑶山地区的位置示意图[7]1.寒武系砂岩夹泥岩;2.震旦系培地组硅质岩夹砂泥岩;3.晚燕山期岩浆岩;4.早燕山期岩浆岩;5.华力西—印支期岩浆岩;6.加里东期岩浆岩;7.断层;8.金矿床/矿点;9.钨钼矿床/铜矿床;10.铜钼矿床;11.钼矿床/铜矿床;12.矿床(点)名称(年龄,Ma);13.六梅金矿"

图2

大平天山地区地质简图[10]1.第四系;2.石炭—三叠系灰岩、硅质岩和砂泥岩;3.泥盆系砾岩、砂岩和灰岩;4.寒武系黄洞口组下段;5.寒武系黄洞口组中段;6.寒武系黄洞口组上段;7.燕山期花岗岩;8.燕山期花岗闪长岩;9.燕山期花岗斑岩脉;10.燕山期霏细斑岩脉;11.燕山期流纹斑岩;12.地质界线;13.地层不整合界线;14.岩相界线;15.断层;16.金矿床;17.银铅锌矿床;18.银铜铅锌矿床;19.矿化分带;20.六梅金矿"

图3

六梅金矿区地质简图(a)及1号勘探线剖面图(b)(据广西地矿资源勘查开发有限责任公司修改,2007)1.第四系;2.寒武系黄洞口组上段;3.寒武系黄洞口组中段;4.断层;5.蚀变带;6.矿体;7.钻孔;8.沿脉坑道;9.采样位置"

图4

六梅金矿床矿物生成顺序"

表1

六梅金矿矿体特征"

矿体编号长度/m厚度/m产状金品位/(×10-6
最高最低平均
(20)-15452.4684°∠85°41.91.717.34
(20)-23282.9193°∠88°6.831.744.30
(20)-33253.13254°∠77°8.211.884.23
(20)-4750.5685°∠78°3.26-3.26
(20)-5302.53284°∠85°5.891.252.43
(20)-61301.7880°∠75°3.422.953.26
(20)-71230.85106°∠75°1.50-1.50
(20)-8950.89100°∠82°8.941.564.30

图5

六梅金矿含矿破碎带特征(a)断裂破碎带膨胀部位,石英脉发育;(b)断层破碎带变窄部位,断面平直;(c)Ⅰ阶段的黄铁矿石英脉;(d)Ⅱ阶段的石英细脉及浸染状毒砂和黄铁矿;(e)Ⅲ阶段的石英、方铅矿和辉锑矿脉;(f)Ⅳ阶段的铁白云石脉切割Ⅱ阶段的矿石和石英"

图6

六梅金矿矿石微观结构特征(a)毒砂—黄铁矿脉(反射光); (b)毒砂—黄铁矿脉(正交偏光);(c)方铅矿、闪锌矿与黄铜矿共生(反射光);(d)铁白云石中的辉锑矿(反射光);(e)Ⅳ阶段铁白云石切割早期石英脉(正交偏光);(f)绢云母化(正交偏光)Apy-毒砂;Ccp-黄铜矿;Cb-铁白云石;Gn-方铅矿;Py-黄铁矿;Sp-闪锌矿;Sti-辉锑矿;Ser-绢云母;Qtz-石英"

图7

毒砂、黄铁矿特征及电子探针点位图(a)、(b)、(i)环带黄铁矿;(c)、(e)菱形毒砂颗粒和粒状黄铁矿;(d)、(g)、(h)黄铁矿和毒砂脉;(f)围岩中的毒砂和黄铁矿Apy-毒砂;Py-黄铁矿"

表2

毒砂EPMA分析结果"

样品特征样品编号元素含量/%w(S)/ w(As)
AsAuPbSbAgSSnFeCuZnTotal
自形毒砂LM13-1-843.6300.0460.1740022.88468033.334210.0190100.08791.226
LM13-1-943.140000.000947023.66006034.339100.0040.008101.14811.282
LM13-1-1042.6000.0250.0760.022720023.89940034.0000300.019100.64621.311
LM1-3-2-445.38000.1110.004733021.66721033.185690.0060100.35461.116
LM1-3-2-544.493000021.92732033.418240.0170.01599.87061.152
LM1-3-2-644.6530.0390.1650021.70468033.516930.0010100.07961.136
LM1-3-2-945.728000021.570170.00833.5918200.034100.93201.102
LM1-3-2-1045.4830.0970.10200.00221.65028033.2597800100.59411.112
LM1-2-1-845.24700.1180.0388130.01621.35940033.2970300100.07621.103
LM1-2-1-946.7170.0450.0890.017987021.78985033.0754200101.73421.090
LM1-2-1-1044.47500.1350.098453022.50380033.4342200.005100.65151.182
LM3-5-1-645.8790.0870.0720.0293470.00921.053910.02733.6044900.003100.76471.072
LM3-5-1-744.4630.060.0720.012307021.63743034.9173300.018101.17991.137
LM3-5-1-845.5150.0640.00900.00121.793800.01733.7715200101.17161.119
LM3-5-1-945.40600.1750.0284000.00122.27248033.957010.0160.015101.87111.146
LM12-1-144.9740.1650.0720.023667022.58896033.7752100.030101.62921.174
LM12-1-244.83000.10200.00422.438640.00133.6395600101.01481.170
LM12-1-344.35400.2030.0397600.00522.929180.00933.0253000.017100.58251.208
LM12-1-445.0770.0450.0930.079520022.69677033.5555800.015101.56191.176
LM12-1-544.6520.1630.01700.02322.46732034.4180800101.74001.176
LM12-2-645.0030.0600.030.015147022.64237033.4054800.002101.15791.176
LM12-2-745.7080.07000.049227021.52699033.2944700100.64841.100
LM12-2-846.3840.0500.0980.0198800.02121.192480.00133.9132100.034101.71371.068
LM12-2-945.0540.10400.0331330.00521.961930.05234.386370.0060.013101.61501.139
LM12-2-1042.5630.0100.110.0075730.01122.76699034.665720.0190100.15291.250
LM3-2-1-444.6660.1630.060021.65435034.096770.0240.007100.67111.133
LM3-2-1-544.4540.059000.02522.63138033.6791300.005100.85351.190
LM3-2-1-644.8000.09700021.980720.01634.1847100.049101.12741.146
LM3-2-1-745.1850.1530.13800.00821.65534033.963880.0020.003101.10821.120
他形毒砂LM11-1-341.1410.0820.1810.614387022.61841034.857950.0160.05299.56271.285
LM11-1-444.3260.00300.210160022.68984034.177870.0020101.40891.196
LM11-1-542.23100.1480.5594800.00321.14863034.955660099.04581.170

图8

毒砂和黄铁矿的电子探针面扫描图像"

表3

黄铁矿EPMA分析结果"

样品特征样品编号测点元素含量/%
AsAuPbSbAgSSnFeCuZnTotal
粒状黄铁矿LM11-115.8690.1060.0640049.12803045.633460.0790100.8795
21.2980.0720.3570.0085200.01651.784290.01446.8773400100.4271
LM3-2-112.6250.0480.4320.0142000.00852.15242046.211920.0150.020101.5265
21.8130.0260.3500.004733052.54407045.8738300.020100.6316
32.7970.0430.4120.0236670.03452.176160.00146.2910600.015101.7929
LM1-3-214.44800.2270050.81034045.955910.0230101.4642
24.5020.0240.2550050.93495046.045810.0460101.8078
34.5160.0210.2970.005680049.71847045.807390.0120100.3775
73.8860.0050.2720.004733051.333520.01146.1386300.020101.6709
83.16300.4190.008520051.710330.00346.1435200101.4474
LM3-5-113.61100.2050.0009470.01351.02297046.297900.0620.018101.2308
22.8160.0110.3330051.63418047.077640.0180101.8898
33.7610.0180.2230050.869680.00846.6359900101.5157
42.6580.0720.3240.0085200.00451.54220046.540230.0070101.156
52.4570.0450.3520.0142000.02550.745060.01046.497240.0020100.1475
LM12-1-66.0830.0180.51000.00248.52177045.299290.0190100.4531
73.92200.2370050.783630.02146.4630400.011101.4377
83.89200.4640.001893050.75693045.684270.0460.017100.8621
92.6400.0180.2260050.80045046.740540.0100.025100.4600
104.10500.3180.009467049.69078045.852340.0180.021100.0146
LM12-217.19600.2850.007573047.49419045.311010.0060.012100.3118
24.33200.45600.00350.62638046.547070.0150101.9794
32.3890.0050.3350051.92297046.879290.0340101.5653
44.2260.0470.2660049.60078045.611960.044099.7957
53.9050.0230.2830050.31781046.665300.0250101.2191
环带LM13-114.9340.0830.2880.018933049.844070.01745.169330.0480.015100.4173
环带26.69400.2870.042600048.89265044.892800.0400.039100.8881
环带35.6720.0070.33200.00249.25858045.311010.0290100.6116
核部43.1640.0650.3030.0179870.01051.184180.02345.702840.0030.015100.488
核部50.0510.0420.06800.02053.46286046.550000.0140.059100.2669
核部60.1060.1030.2500053.450000.02145.757150.014099.70115
粒状黄铁矿75.7110.0390.3110.017987049.410890.01445.316870.0790.012100.9117
1-7号点位由边部到核部,再由核部到边部,4号点为核部LM1-2-114.5730.0180.1960.006627051.02891045.0444500100.8670
23.8950.010.3030051.06847045.4523800100.7288
33.3780.0640.2360051.32561045.6707100100.6743
43.73700.4080051.45022045.8315800.016101.4428
53.9350.0180.2090.000947051.366160.01745.858390.0200.021101.4455
63.6840.0710.3490050.925060.01145.531860.0050100.5769
73.7970.0260.36200.00151.533300.03245.8459500.022101.6192
1号点到10号点依次从边部到核部LM1-3-113.3970.1090.4250.0444930.00950.93693045.578740.0200.027100.5472
22.6380.0050.2140051.861650.01846.2080100100.9447
34.45700.1830050.32363045.676450.0400.008100.6881
44.0130.0390.4150050.558030.00245.242210.0190100.2882
53.4150.0070.3080050.70836046.122020.0090.010100.5794
64.6680.0290.0570.0312400.01749.35451045.602190.011099.7699
74.7210.0370.2830.017040051.22408044.3905600100.6727
80.08800.2150053.29077046.8235900100.4174
90.0650.0170.3540053.77341046.6526000100.8620
100.0310.0510.40500.01653.73088046.2646800100.4986

图9

流体包裹体岩相学特征L-液相;V-气相"

表4

六梅金矿流体包裹体测温数据统计"

成矿阶段数量/组均一温度/℃平均盐度 [w(NaCl)]/%平均密度 /(g·cm-3)
范围均值
7233~24423414.750.888
66161~1981819.360.946
5126~1351294.150.993

图10

六梅金矿床流体包裹体均一温度与盐度直方图"

表5

六梅金矿H、O同位素组成"

成矿期次样品编号样品 名称δ18OV-SMOWδ18OH2OδDH2O
Ⅱ阶段LMJK-2石英17.66.1-57
LMJK-3石英17.35.8-59
LMJK-6石英17.05.5-61
Ⅳ阶段LMJK-4石英14.22.7-71
LMJK-7石英13.82.3-73

图11

六梅金矿床H、O同位素组成图解[20]"

表6

六梅金矿毒砂和黄铁矿的S硫同位素组成"

成矿期次样号样品名称δ34SV-CDT/‰
Ⅱ阶段LM-1-3毒砂0.1
LM-3-1毒砂-0.1
LM-3-5毒砂0.2
LM-7毒砂0.3
LM-8毒砂-0.1
LM-9毒砂-0.2
LM-10毒砂0.3
LM-1-3-A黄铁矿-0.5
LM-3-1-A黄铁矿0.0
LM-7-A黄铁矿0.0
LM-8-A黄铁矿0.5
LM-9-A黄铁矿-0.8

图12

六梅金矿毒砂和黄铁矿的S同位素组成图解[12,26]"

表7

六梅金矿与卡林型金矿特征对比"

矿床类型矿物组合元素组合金的赋存状态蚀变成矿流体物质来源资料来源
六梅金矿主要为黄铁矿和毒砂,次要为黄铜矿、方铅矿、闪锌矿和辉锑矿Au-As-Cu-Pb-Zn-Sb不可见金硅化、绢云母化,石英—铁白云石—绢云母脉均一温度范围集中于140~260 ℃。为中低温、低盐度、低密度流体。H-O同位素示踪流体来自于岩浆水和大气降水混合S同位素表明成矿物质来源于岩浆岩本文
卡林型金矿主要为黄铁矿和毒砂,次要为雌黄、雄黄、辉锑矿、辰砂、萤石和重晶石Au-As-Sb-Hg-Tl不可见金去碳酸化、硫化物化、硅化、泥化均一温度范围集中于220~320 ℃。为中低温、低盐度、低密度流体。H-O同位素示踪具有变质流体和盆地流体的性质S同位素示踪显示复杂的来源,也有显示岩浆来源的[29-34]

图13

大平天山岩浆热液成矿系统模式图1.泥盆系;2.寒武系;3.晚燕山期花岗岩;4.晚燕山期花岗闪长岩;5.灰岩;6.地层不整合界限;7.矿体;8.岩浆流体;9.大气降水"

1 邓军.桂东大瑶山地区铜金多金属成矿系列及成矿模式[J].矿产与地质,2013,27(1):8-11.
Deng Jun.Metallogenic series and metallogenic model of Cu-Au polymetallic deposits in Dayaoshan area of eastern Guangxi[J].Mineral Resources and Geology,2013,27(1) :8-11.
2 郭申祥.广西深泥田金矿载金矿物研究[J].矿床地质,2014,33(增1):679-680.
Guo Shenxiang.Study on gold-bearing minerals in Shennitian gold deposits,Guangxi[J].Mineral Deposits,2014,33(Supp.1):679-680.
3 叶荣,王勇,马丽红,等.广西贵港六梅金矿地球化学研究[J].现代地质,2012,26(5):1058-1064.
Ye Rong,Wang Yong,Ma Lihong,et al.Geochemical research on Liumei gold deposit in Guigang,Guangxi[J].Geoscience,2012,26(5):1058-1064.
4 贺战朋.广西贵港福六岭金矿床地质地球化学特征研究[D].北京:中国地质大学(北京),2010.
He Zhanpeng.The Study on Geological and Geochemical Characteristics of Fuliuling Au Ore-deposit in Guigang,Guangxi[D]. Beijing: China University of Geosciences(Beijing),2010.
5 崔常红.广西贵港福六岭金矿床地球化学研究[D].北京:中国地质大学(北京),2009.
Cui Changhong.A Study on Geochemistry of Fuliuling Au Ore-deposit in Guigang,Guangxi[D].Beijing:China Uni-versity of Geosciences(Beijing),2009.
6 韦子任,傅勇.广西贵港龙山金矿田的矿床成因分析[J].矿产与地质,2013,27(5):388-392.
Wei Ziren,Fu Yong.Genesis analysis of Longtoushan Au ore field in Guigang of Guangxi[J].Mineral Resources and Geology,2013,27(5):388-392.
7 陈懋弘,李忠阳,李青,等.初论广西大瑶山地区多期次花岗质岩浆活动与成矿系列[J].地学前缘,2015,22(2):41-53.
Chen Maohong,Li Zhongyang,Li Qing,et al.A prelimina study of multi-stage granitoids and related metallogenic series in Dayaoshan area of Guangxi,China[J].Earth Science Frontiers,2015,22(2):41-53.
8 广西壮族自治区地质矿产勘查开发局.广西壮族自治区区域地质志[M].北京:地质出版社,1985.
Guangxi Bureau of Geology and Mineral Prospecting and Exploitation.Regional Geology of Guangxi Zhuang Autonomous Region[M].Beijing:Geological Publishing House,1985.
9 杨明桂,梅勇文.钦—杭古板块结合带与成矿带的主要特征[J].华南地质与矿产,1997(3):52-59.
Yang Minggui,Mei Yongwen.Characteristics of geology and metatllization in the Qinzhou-Hangzhou paleoplate juncture[J].Geology and Mineral Resources of South China,1997(3):52-59.
10 陈懋弘,李忠阳,韦子任,等.广西贵港大平天山岩浆热液成矿系统[C]//第十三届全国矿床会议论文集.北京:中国地质学会,2016:45-46.
Chen Maohong,Li Zhongyang,Wei Ziren,et al.Magmatic hydrothermal mineralization system of the Dapingtianshan in Guigang,Guangxi[C]//Proceedings of the 13th National Conference on Mineral Deposits.Beijing:Geological Society of China,2016:45-46.
11 刘长坚,袁蒋辉,周荣幸.广西贵港六梅金矿床地质地球化学特征[J].金属矿山,2011,40(9):120-122.
Liu Changjian,Yuan Jianghui,Zhou Rongxing.Study on the geological characteristics of Liumei gold deposit in Guigang,Guangxi[J].Metal Mine,2011,40(9):120-122.
12 葛锐.广西贵港市头闸银铅锌矿床地质特征和成因研究[D].北京:中国地质大学(北京),2019.
Ge Rui.Geological Characteristics and the Genesis of Touzha Ag-Pb-Zn Deposit,Guigang,Guangxi[D]. Beijing:China University of Geosciences(Beijing),2019.
13 梁一鸿,张宏颖,秦亚,等.内蒙古十八倾壕金矿床的叠加成矿作用——来自黄铁矿组分特征的证据[J].吉林大学学报(地球科学版),2012,42(1):77-81.
Liang Yihong,Zhang Hongying,Qin Ya,et al.Multiple mineralization of Shibaqinghao gold deposit in Inner Mongolia:Evidences from the compositions of pyrite[J].Journal of Jilin University(Earth Science Edition),2012,42(1):77-81.
14 盛继福,李岩,范书义.大兴安岭中段铜多金属矿床矿物微量元素研究[J].矿床地质,1999(2):57-64.
Sheng Jifu,Li Yan,Fan Shuyi.A study of minor elements in minerals from polymetallic deposits in the central part of the Daxingan mountains[J].Mineral Deposits,1999(2):57-64.
15 陈懋弘,毛景文,陈振宇,等.滇黔桂“金三角”卡林型金矿含砷黄铁矿和毒砂的矿物学研究[J].矿床地质,2009,28(5):539-557.
Chen Maohong,Mao Jingwen,Chen Zhenyu,et al.Mineralogy of arsenian pyrites and arsenopytites of carlin-type gold deposits in Yunnan-Guizhou-Guangxi “golden triangle” area,southwestern China[J].Mineral Deposits,2009,28(5):539-557.
16 Potter R W I,Clynne M A,Brown D L.Freezing point depression of aqueous sodium chloride solutions[J].Economic Geology,1978,73:284-285.
17 刘斌,段光贤.NaCl-H2O溶液包裹体的密度式和等容式及其应用[J].矿物学报,1987(4):345-352.
Liu Bin,Duan Guangxian.The density and isochoric formulae for NaCl-H2O fluid inclusions(salinity≤25WT%) and their applications[J].Acta Mineralogica Sinica,1987(4):345-352.
18 Clayton R N,O’Neil J R,Mayeda T K.Oxygen isotope exchange between quartz and water[J].Journal of Geophysical Research,1972,77(17):3057-3067.
19 O’Neil J R,Clayton R N,Mayeda T K.Oxygen isotope fractionation in divalent metal carbonates[J].The Journal of Chemical Physics,1969,51:5547-5558.
20 Taylor H P.The application of oxygen and hydrogen isotope studies to problem of hydrothermal alteration and ore deposition[J].Economic Geology,1974,69:843-883.
21 胡庆成,闫浩,吴春明.斑岩—浅成低温热液型Cu-Au矿H2O-Cl-S流体性质和演化方式对成矿的制约[J].地质论评,2014,60(3):601-610.
Hu Qingcheng,Yan Hao,Wu Chunming.Constrains of properties and evolution patterns of H2O-Cl-S fluid on forming of porphyry-epithermal Cu-Au deposit[J]. Geological Review,2014,60(3):601-610.
22 郑永飞.稳定同位素体系理论模式及其矿床地球化学应用[J].矿床地质,2001(1):57-70,85.
Zheng Yongfei.Theoretical modeling of stable isotope systems and its applications to geochemistry of hydrothermal ore deposits[J].Mineral Deposits,2001(1):57-70,85.
23 郑永飞,徐宝龙,周根陶.矿物稳定同位素地球化学研究[J].地学前缘,2000,7(2):299-320.
Zheng Yongfei,Xu Baolong,Zhou Gentao.Geochemical studies of stable isotopes in minerals[J].Earth Science Frontiers,2000,7(2):299-320.
24 Hoef S J.Stable Isotope Geochemistry[M].4th eds.Berlin:Springer-Verlag,1997.
25 Ohmoto H.Stable isotope geochemistry of ore deposit[J].Reviews in Mineralogy and Geochemistry,1986,16(1):491-559.
26 刘苏桥,陈懋弘,杨锋,等.广西金牙金矿毒砂Re-Os同位素测年和硫同位素示踪[J].桂林理工大学学报,2014,34(3):423-430.
Liu Suqiao,Chen Maohong,Yang Feng,et al.Re-Os dating and sulfur isotope tracing of arsenopyrites from Jinya gold deposit in Guangxi[J].Journal of Guilin University of Technology,2014,34(3):423-430.
27 王成辉.广西龙头山金矿区成矿模式及成矿预测[D].北京:中国地质科学院,2011.
Wang Chenghui.Metallogenic Model and Prognosis of the Longtoushan Gold Field,the Guangxi Zhuang Autonomous Region,China[D].Beijing:Chinese Academy of Geological Sciences,2011.
28 申硕果,叶荣,王勇.广西贵港六梅金矿原生晕及深部找矿[J].现代地质,2012,26(5):1086-1094.
Shen Shuoguo,Ye Rong,Wang Yong.The primary halo and deep prospection of Liumei gold deposit in Guigang,Guangxi[J].Geoscience,2012,26(5):1086-1094.
29 苏秀珠,黄志华,衷水平,等.卡林型金矿石中金的赋存状态分析新方法[J].岩矿测试,2013,32(3):474-482.
Su Xiuzhu,Huang Zhihua,Zhong Shuiping,et al.New analysis method for gold occurrence in carlin-type gold ore[J].Rock and Mineral Analysis,2013,32(3):474-482.
30 谢贤洋,冯定素,陈懋弘,等.贵州泥堡金矿床的流体包裹体和稳定同位素地球化学研究及其矿床成因意义[J].岩石学报,2016,32(11):3360-3376.
Xie Xianyang,Feng Dingsu,Chen Maohong,et al.Fluid inclusion and stable isotope geochemistry study of the Nibao gold deposit,Guizhou and insights into ore genesis[J].Acta Petrologica Sinica,2016,32(11):3360-3376.
31 张弘弢,苏文超,田建吉,等.贵州水银洞卡林型金矿床金的赋存状态初步研究[J].矿物学报,2008,28(1):17-24.
Zhang Hongtao,Su Wenchao,Tian Jianji,et al.The occurrence of gold at Shuiyindong carlin-type gold deposit,Guizhou[J].Acta Mineralogica Sinica,2008,28(1):17-24.
32 刘源,侯中健,李定武.我国卡林型金矿研究现状[J].四川地质学报,2013,33(2):132-136.
Liu Yuan,Hou Zhongjian,Li Dingwu.Present situation of research into carlin-type gold deposits in China[J]. Acta Geologica Sichuan,2013,33(2):132-136.
33 韦龙明,刘鸾玲.中国卡林型金矿床金的赋存状态研究[J].地质与勘探,1995,31(6):31-35.
Wei Longming,Liu Luanling.Gold occurrence state of carlin-type gold deposits in China[J].Geology and Exploration,1995,31(6):31-35.
34 郭申祥.广西荔浦深泥田金矿的地质特征与成因类型研究[D].北京:中国地质大学(北京),2017.
Guo Shenxiang.Geological Features and Genesis Type of Shennitian Gold Deposit in Lipu County,Guangxi Province[D]. Beijing:China University of Geosciences(Beijing),2017.
35 黄民智,陈伟十,李蔚铮,等.广西龙头山次火山—隐爆角砾岩型金矿床[J].地球学报,1999,20(1):39-46.
Huang Minzhi,Chen Weishi,Li Weizheng,et al.Longtoushan gold deposit of subvolcanic-cryptoexplosion breccia type,Guangxi[J].Acta Geoscientica,1999,20(1):39-46.
36 谢抡司,孙邦东.广西贵港市龙头山火山—次火山岩型金矿床地质特征[J].广西地质,1993,6(4):27-42.
Xie Lunsi,Sun Bangdong.Geologiacal characteristics of Mt.Longtoushan volcanic-subvolcanic gold deposit[J].Guangxi Geology,1993,6(4):27-42.
37 陈富文,李华芹,梅玉萍.广西龙头山斑岩型金矿成岩成矿锆石SHRIMP U-Pb年代学研究[J].地质学报,2008,82(7):921-926.
Chen Fuwen,Li Huaqin,Mei Yuping.Zircon shrimp U-Pb chronology of diagenetic mineralization of the Longtoushan porphyry gold orefield,Gui Country,Guangxi[J].Acta Geologica Sinica,2008,82(7):921-926.
38 Sillitoe R H,Bonham H F.Sediment-hosted gold deposits:Distal products of magmatic-hydrothermal systems[J].Geology,1990,18(12):157-161.
39 Sillitoe R H. Porphyry copper systems[J].Economic geology,2010,105(1):3-41.
40 Zhao P L,Yuan S D,Mao J W,et al.Constraints on the timing and genetic link of the large-scale accumulation of proximal W-Sn-Mo-Bi and distal Pb-Zn-Ag mineralization of the world-class Dongpo orefield,Nanling range,South China[J].Ore Geology Reviews,2017,95:140-1160.
[1] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[2] 宁钧陶, 黄宝亮, 董国军, 周岳强, 高卓龙, 康博. 湘东北热液型钴矿床中含钴矿物特征及其对成矿的指示意义[J]. 黄金科学技术, 2023, 31(4): 531-545.
[3] 王智琳,张凯,许德如,邹少浩,王宇非. 东昆仑驼路沟矿床中钴成矿过程的矿物学示踪[J]. 黄金科学技术, 2023, 31(2): 175-189.
[4] 寸小妮,薛玉山,王瑜亮,刘新伟. 陕西龙头沟金矿黄铁矿标型特征及其找矿意义[J]. 黄金科学技术, 2023, 31(1): 64-77.
[5] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
[6] 万泰安,许德如,马文,张胜伟,王国建,卞玉冰,李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690.
[7] 陈振, 王翠芝, 吕古贤, 张宝林, 张启鹏, 魏竣滨, 史晓鸣. 柴胡栏子金矿黄铁矿的化学成分标型特征及其矿床学意义[J]. 黄金科学技术, 2022, 30(2): 165-178.
[8] 梁改忠,杨奎锋,范宏瑞,李兴辉. 东昆仑阿斯哈金矿胶状黄铁矿成因及其成矿意义[J]. 黄金科学技术, 2022, 30(1): 19-33.
[9] 王智琳,伍杨,许德如,邹少浩,董国军,彭尔柯,宁钧陶,康博. 湘东北长沙—平江断裂带关键金属钴的赋存状态与成矿规律[J]. 黄金科学技术, 2020, 28(6): 779-785.
[10] 温佳伟,史鹏亮,刘彦兵,张静,屈海浪,李元申,胡博心,缪广. 辽宁二道沟金矿床黄铁矿热电性特征及深部找矿预测[J]. 黄金科学技术, 2020, 28(6): 812-824.
[11] 高华, 谢玉华, 杨亮, 张哲, 柯新星, 刘晓敏, 罗建镖, 刘琦, 刘继顺, 王智琳, 孔华. 湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示[J]. 黄金科学技术, 2020, 28(5): 712-726.
[12] 张振, 宁生元, 徐增田. 胶东玲珑九曲金矿床载金黄铁矿矿物学特征及其深部找矿意义[J]. 黄金科学技术, 2020, 28(3): 328-336.
[13] 陈玉民, 张华锋, 张聪颖, 胡换龙, 王昭坤, 曾庆栋, 范宏瑞. 黄铁矿标型特征对胶东三山岛金矿深部矿化的启示[J]. 黄金科学技术, 2019, 27(5): 637-647.
[14] 罗清威,王保国,义爱文,张克川,潘泽,张盛亚. 坦桑尼亚某绿岩带型金矿床中黄铁矿的标型特征及意义[J]. 黄金科学技术, 2019, 27(1): 15-24.
[15] 刘艳华,陈国宝,杨洪英,金哲男,王改荣. 毒砂机械活化性能及其浸出试验研究[J]. 黄金科学技术, 2018, 26(5): 669-676.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!