img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 509-520.doi: 10.11872/j.issn.1005-2518.2020.04.029

• 采选技术与矿山管理 • 上一篇    下一篇

十字交叉裂隙扩展机理试验与数值模拟研究

贺桂成1(),陈科旭1,2,戴兵1,2(),王程程1   

  1. 1.南华大学资源环境与安全工程学院,湖南 衡阳 421000
    2.山东黄金集团有限公司深井开采实验室,山东 烟台 261442
  • 收稿日期:2020-01-02 修回日期:2020-05-21 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 戴兵 E-mail:Hegc9210@163.com;daibingusc@usc.edu.cn
  • 作者简介:贺桂成(1977-),男,湖南衡阳人,副教授,从事岩土工程灾害预测与控制方面的教学与科研工作。Hegc9210@163.com
  • 基金资助:
    国家自然科学基金项目“微生物胶结砂岩型地浸铀矿山隔水层的抗渗性能试验及机理研究”(51974163);湖南省教育厅重点科研基金“微波照射花岗岩型铀矿石热—力耦合作用机理及热裂断裂机制研究”(18A248)

Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture

Guicheng HE1(),Kexu CHEN1,2,Bing DAI1,2(),Chengcheng WANG1   

  1. 1.School of Resource Environment and Safety Engineering,University of South China,Hengyang 421000,Hunan,China
    2.Deep Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Yantai 261442,Shandong,China
  • Received:2020-01-02 Revised:2020-05-21 Online:2020-08-31 Published:2020-08-27
  • Contact: Bing DAI E-mail:Hegc9210@163.com;daibingusc@usc.edu.cn

摘要:

岩石内部微裂隙的起裂贯通破坏易引发边坡滑坡、隧道塌方和采场冒顶等工程事故,造成巨大的经济损失和恶劣的社会影响。为了探究裂隙岩石中裂隙演化规律及破坏机理,根据相似理论,采用细沙、白水泥和水按一定比例制作含十字交叉裂隙的类岩石试样,利用RMT-150B岩石力学试验机对其进行单轴压缩试验,并基于室内试验测试结果,建立了含预制十字交叉裂隙岩石试样的PFC数值模拟模型,分析含十字交叉裂隙试样的裂纹起裂、扩展和贯通的演化规律及其失稳破坏机理。研究结果表明:含十字交叉裂隙试样的峰值强度和弹性模量低于完整试样;数值模拟结果的峰值强度、弹性模量、起裂应力和裂隙倾角的变化关系与室内试验测试结果的变化关系基本吻合,即随着裂隙倾角的增大呈现先增大后减小的倒“V”形变化趋势;裂隙倾角为0°时微裂纹起裂于主次裂隙尖端,裂隙倾角为30°时裂纹起裂于主裂隙尖端,裂隙倾角为45°和60°时裂纹起裂于次裂隙尖端;微裂纹数量随应变增加经历了静止期、增加缓慢期、中期增加期和最活跃期4个阶段,且后一阶段增长率总是高于前一阶段;裂隙倾角为0°、30°、45°和60°时试样的破坏模式均为对角剪切破坏。

关键词: 十字交叉裂隙, 类岩石材料, 数值模拟, 裂纹演化, 微裂纹数量, 剪切破坏

Abstract:

Defects in rocks make their physical properties anisotropic.When subjected to external force,the defect will crack,expand and even destroy.Therefore,it is very important to study its failure behavior to predict the instability of engineering structure.Previous studies are more concentrated on the evolution process of single fracture or non intersecting multi fracture,however,rock fracture often exists in the form of intersecting multi fracture in practical engineering.Based on RMT-150B,the cross fracture rock samples (150 mm×200 mm×45 mm) with different fracture inclination were prepared in the laboratory,and the uniaxial compression test was carried out with the displacement controlled loading mode of 0.01 mm/s.The results show that the peak strength and modulus of elasticity of the cross fracture specimen are lower than that of the intact specimen.The peak strength,modulus of elasticity and crack initiation stress increase first and then decrease with the increase of fracture inclination.In order to make up for the shortcomings of laboratory test technology in reflecting the macro and micro morphology of cross cracks,PFC2D numerical simulation technology was used to calibrate the micro parameters of the numerical model by comparing the deformation and failure characteristics of the complete specimen.The results of numerical simulation show that the relationship between peak strength,modulus of elasticity,initial crack stress and crack inclination is basically consistent with the results of laboratory tests.From the process of crack evolution,it is observed that the inclination angle of 0° is the simultaneous cracking from the tip of the primary and secondary cracks,the inclination angle of 30° is the crack initiation from the tip of the primary crack,and the inclination angle of 45° and 60° are the cracks from the tip of the secondary crack.The number curves of microcracks are divided into four stages,namely quiescent period, slow increase period, mid-term increase period, and most active period,and the growth rate of the latter stage is always higher than that of the former stage,the change characteristics of cracks are different in different stages.It can be clearly seen from the displacement field that when the inclination angles are 0°,30° and 45°respectively,the specimen is the diagonal shear failure controlled by the secondary fracture.When the inclination angle is 60°,the specimen is mainly the shear failure controlled by the main fracture.

Key words: crisscross fracture, rock-like specimen, numerical simulation, fracture propagation, the number of microcracks, shear failure

中图分类号: 

  • TU45

表1

完整试样的力学参数"

参数数值参数数值
密度ρ/(kg·m-31 999黏聚力C/MPa3.98
抗压强度σc/MPa23.6泊松比ν0.29
抗拉强度σt/MPa3.44内摩擦角ψ/(°)36.2
弹性模量E/GPa43.14

图1

十字交叉裂隙试件模型2a为主裂隙长度;2b为次裂隙长度;α为主裂隙与竖轴夹角"

图2

改装后的RMT-150B伺服控制试验机"

图3

完整试块试验和数值模拟受压破坏形态对比"

表2

完整试样PFC细观参数"

参数取值参数取值
颗粒密度/(kg·m-31 999颗粒摩擦因子0.3
最小颗粒半径/mm0.4平行黏结拉伸应力/MPa14±1
最大颗粒半径/mm0.5平行黏结黏聚力/MPa8.5±0.5
颗粒刚度比1.9平行黏结拉伸摩擦角/(°)36.2
平行黏结刚度比1.9

图4

裂隙体数值分析模型和微观接触图"

图5

不同裂隙倾角下试验和数值模拟的应力—应变曲线对比"

图6

峰值强度随裂隙倾角变化曲线"

图7

裂隙倾角对十字交叉裂隙试样变形参数影响"

图8

裂纹起裂应力与裂隙倾角的关系"

图9

不同裂隙倾角下PFC中试样的破坏过程图和试验破坏图注:1、4、5为宏观或远场裂纹编号;1a、4b等为微裂纹编号;图中B-11.57 MPa表示加载到B点所对应的应力为11.57 MPa,其余依此类推"

图10

不同倾角下微裂纹数量随应变的变化曲线注:A~E表示应力加载到某一点;Ⅰ~Ⅳ表示静止期、增加缓慢期、中期增加期和最活跃期"

图11

PFC中不同倾角下试样破坏后的主位移、水平位移和竖向位移注:1~3为裂纹编号"

1 钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程报,2012,31(10):1945-1956.
Qian Qihu.Challenges faced by underground projects construction safety and countermeasures[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1945-1956.
2 Brace W F,Byerlee J D.Recent experimental studies of brittle fracture rocks[C]//Proeeedings of the Eighth U. S. Symposium on Rock Mechanics.Minnesota:American Rock Mechanics Assonciation,1967:57-81.
3 Wong L N Y,Einstein H H.Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(2):239-249.
4 蒲成志,曹平,陈瑜,等.不同裂隙相对张开度下类岩石材料断裂试验与破坏机理[J].中南大学学报(自然科学版),2011,42(8):2394-2399.
Pu Chengzhi,Cao Ping,Chen Yu,et al.Fracture test and failure mechanism of rock-like material of relatively different fracture apertures[J].Journal of Central South University(Science and Technology),2011,42(8):2394-2399.
5 张国凯,李海波,王明洋,等.基于声学测试和摄像技术的单裂隙岩石裂纹扩展特征研究[J].岩土力学,2019,40(增1):63-72,81.
Zhang Guokai,Li Haibo,Wang Mingyang,et al.Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique[J].Rock and Soil Mechanics,2019,40(Supp.1):63-72,81.
6 Haeri H,Shahriar K,Marji M F,et al.Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J].International Journal of Rock Mechanics and Mining Sciences,2014,67(4):20-28.
7 黄彦华,杨圣奇.断续三裂隙砂岩单轴压缩裂纹扩展特征颗粒流分析[J].应用基础与工程科学学报,2016,24(6):1232-1246.
Huang Yanhua,Yang Shengqi.Particle flow analysis on crack coalescence behavior of sandstone specimen containing three pre-existing fissures under uniaxial compression[J].Journal of Basic Science and Engineering,2016,24(6):1232-1247.
8 Lee J,Hong J W,Jung J W.The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws[J].Engineering Geology,2017,223:31-47.
9 Yang S Q.Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure[J].Engineering Fracture Mechanics,2011,78(17):3059-3081.
10 Zhou X P,Cheng H,Feng Y F.An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression[J].Rock Mechanics and Rock Engineering,2014,47:1961-1986.
11 黄彦华,杨圣奇,鞠杨,等.断续裂隙类岩石材料三轴压缩力学特性试验研究[J].岩土工程学报,2016,38(7):1212-1220.
Huang Yanhua,Yang Shengqi,Ju Yang,et al.Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J].Chinese Journal of Geotechnical Mecha-nics and Engineering,2016,38(7):1212-1220.
12 杨圣奇,黄彦华,温森.高温后非共面双裂隙红砂岩力学特性试验研究[J].岩石力学与工程学报,2015,34(3):440-451.
Yang Shengqi,Huang Yanhua,Wen Sen.Experimental study of mechanical behavior of red sandstone with two non-coplanar fissures after high temperature heating[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):440-451.
13 范祥,谢永利,来弘鹏,等.含两条节理岩样压缩破坏行为的颗粒流模拟[J].地下空间与工程学报,2018,14(2):461-469.
Fan Xiang,Xie Yongli,Lai Hongpeng,et al.Numerical simulation of failure behavior of specimens with two flaws under compressive loading using PFC[J].Chinese Journal of Underground Space and Engineering,2018,14(2):461-469.
14 Huang Y H,Yang S Q,Ranjith P G,et al.Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes:Experimental stu-dy and particle flow modeling[J].Computers and Geotechnics,2017,88:182-198.
15 Sun W B,Du H Q,Shao J L,et al.Numerical Analysis of Crack Propagation Evolution of Specimens with Different Dip Angles of Cross Fractures[J].Geotechnical and Geological Engineering,2019,37:3379-3386.
16 田文岭,杨圣奇,黄彦华.不同围压下共面双裂隙脆性砂岩裂纹演化特性颗粒流模拟研究[J].采矿与安全工程学报,2017,34(6):1207-1215.
Tian Wenling,Yang Shengqi,Huang Yanhua.PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures[J].Journal of Mining and Safety Engineering,2017,34(6):1207-1215.
17 李勇,蔡卫兵,朱维申,等.单轴压缩条件下平行双裂隙演化机理的颗粒流分析[J].中南大学学报(自然科学版),2019,50(12):3035-3045.
Li Yong,Cai Weibing,Zhu Weishen,et al.Particle flow analysis of parallel double crack evolution under uniaxial compression[J].Journal of Central South University(Sc-ience and Technology),2019,50(12):3035-3045.
18 Cao Ping,Liu Taoying,Pu Chengzhi,et al.Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J].Engineering Geology,2015,187:113-121.
19 张波,李术才,杨学英,等.含交叉多裂隙类岩石材料单轴压缩力学性能研究[J].岩石力学与工程学报,2015,34(9):1777-1785.
Zhang Bo,Li Shucai,Yang Xueying,et al.Mechanical property of rock-like material with intersecting multi-flaws under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1777-1785.
20 张波,李术才,杨学英,等.含交叉裂隙节理岩体单轴压缩破坏机制研究[J].岩土力学,2014,35(7):1863-1870.
Zhang Bo,Li Shucai,Yang Xueying,et al.Uniaxial compression failure mechanism of jointed rock mass with cross-cracks[J].Rock and Soil Mechanics,2014,35(7):1863-1870.
21 张波,杨学英,李术才,等.含两组叠置X型裂隙类岩石材料单轴拉伸破坏特征[J].煤炭学报,2017,42(8):1987-1993.
Zhang Bo,Yang Xueying,Li Shucai,et al.Uniaxial tensile failure properties of rock-like specimens with two overlapped X-type flaws[J].Journal of China Coal Society,2017,42(8):1987-1993.
22 罗可,招国栋,曾佳君,等.加载速率影响的含裂隙类岩石材料破断试验与数值模拟[J].岩石力学与工程学报,2018,37(8):1833-1842.
Luo Ke,Zhao Guodong,Zeng Jiajun,et al.Fracture experiments and numerical simulation of cracked body in rock-like materials affected by loading rate[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(8):1833-1842.
23 蒲成志,曹平,衣永亮.单轴压缩下预制2条贯通裂隙类岩材料断裂行为[J].中南大学学报(自然科学版),2012,43(7):2708-2715.
Pu Chengzhi,Cao Ping,Yi Yongliang.Fracture for rock-like materials with two transfixion fissures under uniaxial compression[J].Journal of Central South University(Science and Technology),2012,43(7):2708 -2715.
24 王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33 (2):264-275.
Wang Yu,Li Xiao,Wu Yanfang,et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(2):264-275.
25 Zhang X P,Wong L N Y.Displacement field analysis for cracking processes in bonded-particle model[J].Bulletin of Engineering Geology and the Environment,2014,73(1):13-21.
[1] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[2] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[3] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[4] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[5] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[6] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[7] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[8] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[9] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[10] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[11] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[12] 王文才,李俊鹏,王创业,陈世江,王鹏. 外荷载下青砂岩声发射特征及损伤演化规律[J]. 黄金科学技术, 2023, 31(3): 516-530.
[13] 王晓军,钟启平,胡凯建,汪豪,王宇,李立浩,冯亮. 离子吸附型稀土矿剪切力学特性及微震信号特征[J]. 黄金科学技术, 2022, 30(6): 912-922.
[14] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[15] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!