黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 575-584.doi: 10.11872/j.issn.1005-2518.2020.04.019
Rui XU1(),Kuikui HOU2,Xi WANG2,Xingquan LIU2,Xibing LI1()
摘要:
为了更好地预测岩土工程中的岩爆烈度,建立了基于多类型核函数的主成分分析方法与遗传算法或粒子群优化算法(GA/PSO)优化的支持向量机(SVM)相结合的组合预测模型。选取围岩最大切向应力
中图分类号:
1 | 李夕兵.岩石动力学基础与应用[M].北京:科学出版社,2014. |
Li Xibing.Rock Dynamics Fundamentals and Applications[M].Beijing:Science Press,2014. | |
2 | 王元汉,李卧东,李启光,等.岩爆预测的模糊数学综合评判方法[J].岩石力学与工程学报,1998,17(5):493-501. |
Wang Yuanhan,Li Wodong,Li Qiguang,et al.Method of fuzzy comprehensive evaluations for rockburst prediction[J].Chinese Journal of Rock Mechanics and Engineering,1998,17(5):493-501. | |
3 | 李夕兵,宫凤强,王少锋,等.深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J].岩石力学与工程学报,2019,38(4):708-723. |
Li Xibing,Gong Fengqiang,Wang Shaofeng,et al.Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J].Chinese Journal of Rock Mechanics and Engineering,2019,38(4):708-723. | |
4 | 宫凤强,李夕兵.岩爆发生和烈度分级预测的距离判别方法及应用[J].岩石力学与工程学报,2007,26(5):1012-1018. |
Gong Fengqiang,Li Xibing.A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(5):1012-1018. | |
5 | 赵洪波.岩爆分类的支持向量机方法[J].岩土力学,2005,26(4):642-644. |
Zhao Hongbo.Classification of rockburst using support vector machine[J].Rock and Soil Mechanics,2005,26(4):642-644. | |
6 | 白明洲,王连俊,许兆义.岩爆危险性预测的神经网络模型及应用研究[J].中国安全科学学报,2002,12(4):65-69. |
Bai Mingzhou,Wang Lianjun,Xu Zhaoyi.Study on a neutral network model and its application in predicting the risk of rock blast[J].China Safety Science Journal,2002,12(4):65-69. | |
7 | 高玮.基于蚁群聚类算法的岩爆预测研究[J].岩土工程学报,2010,32(6):874-880. |
Gao Wei.Prediction of rock burst based on ant colony clustering algorithm[J].Chinese Journal of Geotechnical Engineering,2010,32(6):874-880. | |
8 | Zhou J,Li X B,Shi X Z.Long-term prediction model of rockburst in underground openings using heuristic algorithms and support vector machines[J].Safety Science,2012,50(4):629-644. |
9 | 邱道宏,李术才,张乐文,等.基于模型可靠性检查的QGA-SVM岩爆倾向性分类研究[J].应用基础与工程科学学报,2015,23(5):981-991. |
Qiu Daohong,Li Shucai,Zhang Lewen,et al.Research on QGA-SVM rock burst orientation classification based on model reliability examination[J].Journal of Basic Science and Engineering,2015,23(5):981-991. | |
10 | 贾义鹏,吕庆,尚岳全.基于粒子群算法和广义回归神经网络的岩爆预测[J].岩石力学与工程学报,2013,32(2):344-348. |
Jia Yipeng,Qing Lü,Shang Yuequan.Rockburst prediction using particle swarm optimization algorithm and general regression neural network[J].China Journal of Rock Mechanics and Engineering,2013,32( 2):343-348. | |
11 | Liu S,Dou L M,Si G Y,et al.A principal component analysis/fuzzy comprehensive evaluation model for coal burst liability assessment[J].International Journal of Rock Mechanics and Mining Sciences,2016,81(5):62-69. |
12 | 吴顺川,张晨曦,成子桥.基于PCA-PNN原理的岩爆烈度分级预测方法[J].煤炭学报,2019,44(9):2767-2776. |
Wu Shunchuan,Zhang Chenxi,Cheng Ziqiao. Prediction of intensity classification of rockburst based on PCA-PNN principle[J].Journal of China Coal Society,2019,44(9):2767-2776. | |
13 | Zhou J,Li X B,Hani S M.Classification of rockburst in underground projects comparison of ten supervised learning methods[J].Journal of Computing in Civil Engineering,2016,30(5):1-19. |
14 | 赵国彦,刘雷磊,王剑波,等.岩爆等级预测的PCA-OPF模型[J].矿冶工程,2019,39(4):1-5. |
Zhao Guoyan,Liu Leilei,Wang Jianbo,et al.PCA-OPF model for rock burst prediction[J].Mining and Metallurgical Engineering,2019,39(4):1-5. | |
15 | 辛焕平.MATLAB R2017a模式识别与智能计算[M].北京:电子工业出版社,2018. |
Xin Huanping.MATLAB R2017a Pattern Recognition and Intelligent Computing[M].Beijing:Publishing House of Electronics Industry,2018. | |
16 | Sun H T,Lü G D,Mo J Q,et al.Application of KPCA combined with SVM in Raman spectral discrimination[J].Optik,2019,184(5):214-219. |
17 | 冯夏庭,赵洪波.岩爆预测的支持向量机[J].东北大学学报(自然科学版),2002,23(1):57-59. |
Feng Xiating,Zhao Hongbo.Prediction of rockburst using support vector machine[J].Journal of Northeastern University(Natural Science),2002,23( 1):57-59. | |
18 | 陈晋音,熊晖,郑海斌.基于粒子群算法的支持向量机的参数优化[J].计算机科学,2018,45(6):197-203. |
Chen Jinyin,Xiong Hui,Zheng Haibin.Parameters optimization for SVM based on particle swarm algorithm[J].Computer Science,2018,45(6):197-203. | |
19 | Pu Y Y,Apel D B,Xu H W.Rockburst prediction in kimberlite with unsupervised learning method and support vector classifier[J].Tunnelling and Underground Space Technology,2019,90:12-18. |
[1] | 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679. |
[2] | 方博扬,赵国彦,马举,陈立强,简筝. Adaboost集成学习优化的巷道围岩松动圈预测研究[J]. 黄金科学技术, 2023, 31(3): 497-506. |
[3] | 谢饶青, 陈建宏, 肖文丰. 基于NPCA-GA-BP神经网络的采场稳定性预测方法[J]. 黄金科学技术, 2022, 30(2): 272-281. |
[4] | 骆正山,黄仁惠,申国臣. 基于KPCA-IPSO-LSSVM的充填管道磨损风险预测[J]. 黄金科学技术, 2021, 29(2): 245-255. |
[5] | 公凡波,毕林. 露天矿电铲铲装移动轨迹规划研究[J]. 黄金科学技术, 2021, 29(1): 43-52. |
[6] | 刘永春,王李管,吴家希. 基于LQR-QPSO的地下铲运机控制参数优化研究[J]. 黄金科学技术, 2021, 29(1): 25-34. |
[7] | 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929. |
[8] | 谭吉玉,刘高常. 基于小波支持向量机模型的矿区生态安全评价方法研究[J]. 黄金科学技术, 2020, 28(6): 902-909. |
[9] | 韩超群,陈建宏,周智勇,杨珊. 基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究[J]. 黄金科学技术, 2019, 27(6): 879-887. |
[10] | 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588. |
[11] | 张钦礼,王兢*,王新民. 基于核主成分分析与PSO-SVM的充填管道失效风险性分级评价模型[J]. 黄金科学技术, 2017, 25(3): 70-76. |
[12] | 刘志祥,刘奕然,兰明. 矿井涌水量预测的PCA-GA-ELM模型及应用[J]. 黄金科学技术, 2017, 25(1): 61-67. |
[13] | 叶培. 一种新的量子遗传算法在阳山金矿GPS卫星信号去噪处理中的应用探讨[J]. 黄金科学技术, 2015, 23(2): 83-87. |
|