黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 585-594.doi: 10.11872/j.issn.1005-2518.2020.04.188
Zhiqin LIAO1,2(),Liguan WANG1,2(),Zhengxiang HE1,2
摘要:
针对岩体工程中岩体破裂信号与爆破振动信号难以自动区分的问题,提出了一种基于集合经验模态分解(EEMD)关联维数与机器学习相结合的微震信号特征提取和分类方法。利用EEMD将微震信号分解为本征模态函数(IMF)分量,并从得到的IMF分量中筛选出主分量IMF1~IMF4,再通过相空间重构计算出各个主分量的关联维数,最后将所得到的关联维数作为特征向量,使用SVM方法进行微震信号自动识别,并与其他机器学习方法进行对比分析。试验结果表明:该方法对微震信号的自动识别具有较高的准确率,且基于高斯核函数的SVM的识别效果明显优于逻辑回归(LR)和K-近邻算法(KNN)判别法的识别结果,其准确率达到93.7%。
中图分类号:
1 | 李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053. |
Li Shulin,Yin Xiangang,Zheng Wenda,et al.Research of multi-channel microseismic monitoring system and its application to Fankou lead-zinc mine[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(12):2048-2053. | |
2 | Yang C X,Luo Z Q,Hu G B,et al.Application of a microseismic monitoring system in deep mining[J].Journal of University of Science and Technology Beijing,2007,14(1):6-8. |
3 | 唐绍辉,潘懿,黄英华,等.深井矿山地压灾害微震监测技术应用研究 [J].岩石力学与工程学报,2009,28(增2):3597-3603. |
Tang Shaohui,Pan Yi,Huang Yinghua,et al.Application research of microseismic monitoring technology to geos-tress hazards in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3597-3603. | |
4 | Peng P A,He Z X,Wang L G,et al.Automatic classification of microseismic signals based on MFCC and GMM-HMM in underground mines[J].Shock and Vibration,2019:1-9. |
5 | Peng P A,He Z X,Wang L G,et al.Automatic classification of microseismic records in underground mining:A deep learning approach[J].IEEE Access,2020,178:63-76. |
6 | 姜福兴,尹永明,朱权洁,等.单事件多通道微震波形的特征提取与联合识别研究 [J].煤炭学报,2014,39(2):229-237. |
Jiang Fuxing,Yin Yongming,Zhu Quanjie,et al.Feature eatraction and classification of mining microseismic waveforms via multi-channels analysis[J].Journal of China Coal Society,2014,39(2):229-237. | |
7 | Vallejos J A,Mckinnon S D.Logistic regression and neural network classification of seismic records[J].International Journal of Rock Mechanics and Mining Sciences,2013,62(9):86-95. |
8 | Malovichko D.Discrimination of blasts in mine seismology[J].Proceeding of the Deep Mining,2012,35(2):85-94. |
9 | Kuyuk H S,Yildirim E,Dogan E,et al.Clustering seismic activities using linear and nonlinear discriminant analysis [J].Journal of Earth Science,2014,25(1):140-145. |
10 | 曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149. |
Cao Anye,Dou Linming,Qin Yuhong,et al.Characteristic of microseismic monitoring signal in high stressed zone[J].Journal of Mining and Safety Engineering,2007,24(2):146-149. | |
11 | 陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775. |
Lu Caiping,Dou Linming,Wu Xingrong,et al.Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material[J].Chinese Journal of Geotechnical Engineering,2005,27(7):772-775. | |
12 | 朱权洁,姜福兴,于正兴,等.爆破震动与岩石破裂微震信号能量分布特征研究[J].岩石力学与工程学报,2012,31(4):723-730. |
Zhu Quanjie,Jiang Fuxing,Yu Zhengxing,et al.Study on energy distribution characters about blasting vibration and rock fracture microseismic signal[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(4):723-730. | |
13 | 赵国彦,邓青林,马举.基于FSWT时频分析的矿山微震信号分析与识别 [J].岩土工程学报,2015,37(2):306-312. |
Zhao Guoyan,Deng Qinglin,Ma Ju.Recognition of mine microseismic signals based on FSWT time-frequency analysis[J].Chinese Journal of Geotechnical Engineering,2015,37(2):306-312. | |
14 | 赵国彦,邓青林.基于LCD分解的微震信号分析与识别 [J].科技导报,2014,32(27):49-55. |
Zhao Guoyan,Deng Qinglin.Analysis and differentiation of microseismic signal based on LCD decomposition[J].Science and Technology Review,2014,32(27):49-55. | |
15 | 李伟.基于LMD和模式识别的矿山微震信号特征提取及分类方法 [J].煤炭学报,2017,42(5):1156-1164. |
Li Wei.Feature extraction and classification method of mine microseismic signals based on LMD and pattern recognition[J].Journal of China Coal Society,2017,42(5):1156-1164. | |
16 | 尚雪义,李夕兵,彭康,等.基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法 [J].岩土工程学报,2016,38(10):1849-1858. |
Shang Xueyi,Li Xibing,Peng Kang,et al.Feature extraction and classification of mine microseismic and blast based on EMD_SVD[J].Chinese Journal of Geotechnical Engineering,2016,38(10):1849-1858. | |
17 | Grassberger P P I.Measuring the strangeness of strange attractors[J].Physica D Nonlinear Phenomena,1983,9(1):189-208. |
18 | 刘深,张小蓟,牛奕龙,等.基于IMF能量谱的水声信号特征提取与分类[J].计算机工程与应用,2014,50(3):203-206. |
Liu Shen,Zhang Xiaoji,Niu Yilong,et al.Feature extraction and classification experiment of underwater acoustic signals based on energy spectrum of IMF’s[J].Computer Engineering and Applications,2014,50(3):203-206. | |
19 | Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics Berlin Springer Verlag,1981,898:366-381. |
20 | 李琳,张永祥,明廷涛.EMD降噪的关联维数在齿轮故障诊断中的应用研究[J].振动与冲击,2009,28(4):145-148. |
Li Lin,Zhang Yongxiang,Ming Tingtao.Application research of correlation dimension of EMD noise reduction in gear fault diagnosis[J].Journal of Vibration and Sho-ck,2009,28(4):145-148. | |
21 | Packard N,Crutchfield J,Farmer D.Geometry from a time series[J].Physical Review Letters,1980,712(45):712. |
22 | 徐海祥.基于支持向量机方法的图像分割与目标分类[D].武汉:华中科技大学,2005. |
Xu Haixiang.Image Segmentation and Object Classification Based on Support Vector Machines[D].Wuhan:Huazhong University of Science and Technology,2005. |
[1] | 李地元, 杨博, 刘子达, 刘永平, 赵君杰. 基于集成树算法的岩石黏聚力和内摩擦角预测方法[J]. 黄金科学技术, 2024, 32(5): 847-859. |
[2] | 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630. |
[3] | 姜志宏, 陈澳. 融合全监督学习的半监督矿石粒度预测算法[J]. 黄金科学技术, 2024, 32(3): 539-547. |
[4] | 凡兴禹, 王雪林. 基于改进XGBoost算法的深部巷道松动圈智能预测研究[J]. 黄金科学技术, 2024, 32(1): 109-122. |
[5] | 许方颖, 邹艳红, 易卓炜, 杨福强, 毛先成. 基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例[J]. 黄金科学技术, 2023, 31(5): 721-735. |
[6] | 王晓军,钟启平,胡凯建,汪豪,王宇,李立浩,冯亮. 离子吸附型稀土矿剪切力学特性及微震信号特征[J]. 黄金科学技术, 2022, 30(6): 912-922. |
[7] | 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873. |
[8] | 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833. |
[9] | 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929. |
[10] | 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901. |
[11] | 李科明,刘志祥,兰明. 滨海金矿涌水危险评价及涌水量混沌预测研究[J]. 黄金科学技术, 2019, 27(4): 539-547. |
[12] | 曾俊晖,李夕兵. 基于混沌时间序列分析方法的矿山塌陷区范围预测[J]. 黄金科学技术, 2019, 27(2): 249-256. |
[13] | 刘晓明,赵君杰,彭平安,毕林,代碧波. 有效微震信号自动识别技术研究[J]. 黄金科学技术, 2017, 25(3): 84-91. |
|