img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (4): 585-594.doi: 10.11872/j.issn.1005-2518.2020.04.188

• 采选技术与矿山管理 • 上一篇    下一篇

基于EEMD和关联维数的矿山微震信号特征提取和分类

廖智勤1,2(),王李管1,2(),何正祥1,2   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学数字矿山研究中心,湖南 长沙 410083
  • 收稿日期:2019-11-19 修回日期:2020-05-04 出版日期:2020-08-31 发布日期:2020-08-27
  • 通讯作者: 王李管 E-mail:liaozhiqinhold@163.com;liguan_wang@163.com
  • 作者简介:廖智勤(1995-),男,湖南浏阳人,硕士研究生,从事矿山微震监测研究工作。liaozhiqinhold@163.com
  • 基金资助:
    国家重点研发计划项目“深部金属矿集约化连续采矿理论与技术”(2017YFC0602905)

Feature Extraction and Classification of Mine Microseismic Signals Based on EEMD and Correlation Dimension

Zhiqin LIAO1,2(),Liguan WANG1,2(),Zhengxiang HE1,2   

  1. 1.School of Resources and Safety Engineering, Central South University,Changsha 410083,Hunan,China
    2.Digital Mine Research Center,Central South University,Changsha 410083,Hunan,China
  • Received:2019-11-19 Revised:2020-05-04 Online:2020-08-31 Published:2020-08-27
  • Contact: Liguan WANG E-mail:liaozhiqinhold@163.com;liguan_wang@163.com

摘要:

针对岩体工程中岩体破裂信号与爆破振动信号难以自动区分的问题,提出了一种基于集合经验模态分解(EEMD)关联维数与机器学习相结合的微震信号特征提取和分类方法。利用EEMD将微震信号分解为本征模态函数(IMF)分量,并从得到的IMF分量中筛选出主分量IMF1~IMF4,再通过相空间重构计算出各个主分量的关联维数,最后将所得到的关联维数作为特征向量,使用SVM方法进行微震信号自动识别,并与其他机器学习方法进行对比分析。试验结果表明:该方法对微震信号的自动识别具有较高的准确率,且基于高斯核函数的SVM的识别效果明显优于逻辑回归(LR)和K-近邻算法(KNN)判别法的识别结果,其准确率达到93.7%。

关键词: 微震信号, 集合经验模态分解(EEMD), 相空间重构, 关联维数, 机器学习

Abstract:

The microseismic monitoring technique is to evaluate the failure and safety of rock mass indirectly by monitoring the vibration signal caused by the rupture inside the rock mass,and it can provide guidance for ground pressure disaster warning and safety production optimization.In order to accurately analyze the behavior of rock rupture,it is necessary to eliminate the interference of non-microscopic signal.At present,microseismic monitoring system can not recognize microseismic signal automatically.The core problem is that the vibration signal is complex,the waveform characteristic is not obvious,the noise is large and multi-seismic superposition occurs.In order to solve the problem that it is difficult to distinguish the rock burst signals and the blasting vibration signals automatically,a method of feature extraction and classification of microseismic signals based on ensemble empirical mode decomposition(EEMD),correlation dimension and machine learning was pro-posed.Firstly,the microseismic signals was decomposed into Intrinsic Mode Function(IMF) components by EEMD,and the principal components IMF1~IMF4 were selected from the obtained IMF components,the IMF1~IMF4 component was selected as the main component for phase space reconstruction.The delay time and minimum embedding dimension of each component were obtained by autocorrelation function method and Cao algorithm.Then,accoring to the obtained delay time and embedding dimension,the correlation integral curve of IMF1~IMF4 components was obtained by using the G-P algorithm,and the region with the best linearity of the correlation integral curve was found.The integral curve was fitted by least squares,and the resulting linear slope value was taken as the correlation dimension value,and the obtained correlation dimension was taken as the feature vector for microseismic signal recognition..Finally,the SVM method was used to automatically identify the microseismic signals and compare them with other machine learning methods.The experimental results show that the method has a high accuracy for automatic recognition of microseismic signals.The recognition effect of SVM based on Gaussian kernel function is obviously better than the recognition result of Logical Regression(LR) and K-Nearest Neighbor(KNN) discriminant method.The classification accuracy of gaussian kernel function SVM based on EEMD correlation dimension is 93.7%.Based on the analysis,it is found that the recognition effect SVM different kernel functions is different.The recognition effect of Gaussian kernel function SVM is better than that of linear kernel function SVM and Sigmoid kernel function SVM.Therefore,the feature extraction and classification method based on EEMD correlation dimension and SVM provides a feasible new method for mine microseismic signal classification.

Key words: microseismic signal, ensemble empirical mode decomposition(EEMD), phase space reconstru-ction, correlation dimension, machine learning

中图分类号: 

  • TD76

图1

微震信号特征提取及识别模型训练流程"

图2

微震事件波形图"

图3

微震信号EEMD分解"

图4

微震信号自相关函数值"

图5

微震信号最小嵌入维数"

图6

微震信号关联积分"

表1

微震信号主分量关联维数值"

信号类型DIMF1DIMF2DIMF3DIMF4
某岩体破裂信号10.03770.05180.02700.0783
某岩体破裂信号20.01920.03720.02390.0388
某爆破振动信号10.29780.13360.24130.4071
某爆破振动信号20.33470.16660.31370.4017

表2

基于微震信号关联维数的分类结果"

分类方法岩体破裂信号(1 000组)爆破信号(1 000组)分类识别准确性
正确识别数/组错误识别数/组正确识别数/组错误识别数/组准确数/组准确率/%
逻辑回归(LR)8081927092911 51775.0
SVM(高斯核函数)91783937631 85493.7
KNN8681328451551 71386.5

表3

不同核函数对识别准确率的影响分析"

分类方法岩体破裂信号(1 000组)爆破信号(1 000组)分类识别准确性
正确识别数/组错误识别数/组正确识别数/组错误识别数/组准确数/组准确率/%
高斯核函数91783937631 85493.7
线性核函数882118905951 77888.9
Sigmoid核函数890110908921 79889.9
1 李庶林,尹贤刚,郑文达,等.凡口铅锌矿多通道微震监测系统及其应用研究[J].岩石力学与工程学报,2005,24(12):2048-2053.
Li Shulin,Yin Xiangang,Zheng Wenda,et al.Research of multi-channel microseismic monitoring system and its application to Fankou lead-zinc mine[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(12):2048-2053.
2 Yang C X,Luo Z Q,Hu G B,et al.Application of a microseismic monitoring system in deep mining[J].Journal of University of Science and Technology Beijing,2007,14(1):6-8.
3 唐绍辉,潘懿,黄英华,等.深井矿山地压灾害微震监测技术应用研究 [J].岩石力学与工程学报,2009,28(增2):3597-3603.
Tang Shaohui,Pan Yi,Huang Yinghua,et al.Application research of microseismic monitoring technology to geos-tress hazards in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(Supp.2):3597-3603.
4 Peng P A,He Z X,Wang L G,et al.Automatic classification of microseismic signals based on MFCC and GMM-HMM in underground mines[J].Shock and Vibration,2019:1-9.
5 Peng P A,He Z X,Wang L G,et al.Automatic classification of microseismic records in underground mining:A deep learning approach[J].IEEE Access,2020,178:63-76.
6 姜福兴,尹永明,朱权洁,等.单事件多通道微震波形的特征提取与联合识别研究 [J].煤炭学报,2014,39(2):229-237.
Jiang Fuxing,Yin Yongming,Zhu Quanjie,et al.Feature eatraction and classification of mining microseismic waveforms via multi-channels analysis[J].Journal of China Coal Society,2014,39(2):229-237.
7 Vallejos J A,Mckinnon S D.Logistic regression and neural network classification of seismic records[J].International Journal of Rock Mechanics and Mining Sciences,2013,62(9):86-95.
8 Malovichko D.Discrimination of blasts in mine seismology[J].Proceeding of the Deep Mining,2012,35(2):85-94.
9 Kuyuk H S,Yildirim E,Dogan E,et al.Clustering seismic activities using linear and nonlinear discriminant analysis [J].Journal of Earth Science,2014,25(1):140-145.
10 曹安业,窦林名,秦玉红,等.高应力区微震监测信号特征分析[J].采矿与安全工程学报,2007,24(2):146-149.
Cao Anye,Dou Linming,Qin Yuhong,et al.Characteristic of microseismic monitoring signal in high stressed zone[J].Journal of Mining and Safety Engineering,2007,24(2):146-149.
11 陆菜平,窦林名,吴兴荣,等.岩体微震监测的频谱分析与信号识别[J].岩土工程学报,2005,27(7):772-775.
Lu Caiping,Dou Linming,Wu Xingrong,et al.Frequency spectrum analysis on microseismic monitoring and signal differentiation of rock material[J].Chinese Journal of Geotechnical Engineering,2005,27(7):772-775.
12 朱权洁,姜福兴,于正兴,等.爆破震动与岩石破裂微震信号能量分布特征研究[J].岩石力学与工程学报,2012,31(4):723-730.
Zhu Quanjie,Jiang Fuxing,Yu Zhengxing,et al.Study on energy distribution characters about blasting vibration and rock fracture microseismic signal[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(4):723-730.
13 赵国彦,邓青林,马举.基于FSWT时频分析的矿山微震信号分析与识别 [J].岩土工程学报,2015,37(2):306-312.
Zhao Guoyan,Deng Qinglin,Ma Ju.Recognition of mine microseismic signals based on FSWT time-frequency analysis[J].Chinese Journal of Geotechnical Engineering,2015,37(2):306-312.
14 赵国彦,邓青林.基于LCD分解的微震信号分析与识别 [J].科技导报,2014,32(27):49-55.
Zhao Guoyan,Deng Qinglin.Analysis and differentiation of microseismic signal based on LCD decomposition[J].Science and Technology Review,2014,32(27):49-55.
15 李伟.基于LMD和模式识别的矿山微震信号特征提取及分类方法 [J].煤炭学报,2017,42(5):1156-1164.
Li Wei.Feature extraction and classification method of mine microseismic signals based on LMD and pattern recognition[J].Journal of China Coal Society,2017,42(5):1156-1164.
16 尚雪义,李夕兵,彭康,等.基于EMD_SVD的矿山微震与爆破信号特征提取及分类方法 [J].岩土工程学报,2016,38(10):1849-1858.
Shang Xueyi,Li Xibing,Peng Kang,et al.Feature extraction and classification of mine microseismic and blast based on EMD_SVD[J].Chinese Journal of Geotechnical Engineering,2016,38(10):1849-1858.
17 Grassberger P P I.Measuring the strangeness of strange attractors[J].Physica D Nonlinear Phenomena,1983,9(1):189-208.
18 刘深,张小蓟,牛奕龙,等.基于IMF能量谱的水声信号特征提取与分类[J].计算机工程与应用,2014,50(3):203-206.
Liu Shen,Zhang Xiaoji,Niu Yilong,et al.Feature extraction and classification experiment of underwater acoustic signals based on energy spectrum of IMF’s[J].Computer Engineering and Applications,2014,50(3):203-206.
19 Takens F.Detecting strange attractors in turbulence[J].Lecture Notes in Mathematics Berlin Springer Verlag,1981,898:366-381.
20 李琳,张永祥,明廷涛.EMD降噪的关联维数在齿轮故障诊断中的应用研究[J].振动与冲击,2009,28(4):145-148.
Li Lin,Zhang Yongxiang,Ming Tingtao.Application research of correlation dimension of EMD noise reduction in gear fault diagnosis[J].Journal of Vibration and Sho-ck,2009,28(4):145-148.
21 Packard N,Crutchfield J,Farmer D.Geometry from a time series[J].Physical Review Letters,1980,712(45):712.
22 徐海祥.基于支持向量机方法的图像分割与目标分类[D].武汉:华中科技大学,2005.
Xu Haixiang.Image Segmentation and Object Classification Based on Support Vector Machines[D].Wuhan:Huazhong University of Science and Technology,2005.
[1] 李地元, 杨博, 刘子达, 刘永平, 赵君杰. 基于集成树算法的岩石黏聚力和内摩擦角预测方法[J]. 黄金科学技术, 2024, 32(5): 847-859.
[2] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[3] 姜志宏, 陈澳. 融合全监督学习的半监督矿石粒度预测算法[J]. 黄金科学技术, 2024, 32(3): 539-547.
[4] 凡兴禹, 王雪林. 基于改进XGBoost算法的深部巷道松动圈智能预测研究[J]. 黄金科学技术, 2024, 32(1): 109-122.
[5] 许方颖, 邹艳红, 易卓炜, 杨福强, 毛先成. 基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例[J]. 黄金科学技术, 2023, 31(5): 721-735.
[6] 王晓军,钟启平,胡凯建,汪豪,王宇,李立浩,冯亮. 离子吸附型稀土矿剪切力学特性及微震信号特征[J]. 黄金科学技术, 2022, 30(6): 912-922.
[7] 曾强,黄小荣,王晓军,陈青林,刘健,龚囱. 不同埋深灰岩岩爆倾向性及声发射特征试验研究[J]. 黄金科学技术, 2021, 29(6): 863-873.
[8] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[9] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
[10] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[11] 李科明,刘志祥,兰明. 滨海金矿涌水危险评价及涌水量混沌预测研究[J]. 黄金科学技术, 2019, 27(4): 539-547.
[12] 曾俊晖,李夕兵. 基于混沌时间序列分析方法的矿山塌陷区范围预测[J]. 黄金科学技术, 2019, 27(2): 249-256.
[13] 刘晓明,赵君杰,彭平安,毕林,代碧波. 有效微震信号自动识别技术研究[J]. 黄金科学技术, 2017, 25(3): 84-91.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!