img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (5): 712-726.doi: 10.11872/j.issn.1005-2518.2020.05.105

• 矿产勘查与资源评价 • 上一篇    下一篇

湖南通道地区金矿床中黄铁矿成分标型特征及对矿床成因的启示

高华1(),谢玉华1,杨亮1,张哲1,柯新星1,刘晓敏1,罗建镖2,3,刘琦2,3,刘继顺2,3,王智琳2,3,孔华2,3()   

  1. 1.湖南省核工业地质局三〇一大队,湖南 长沙 410114
    2.中南大学有色金属成矿预测教育部重点实验室,湖南 长沙 410083
    3.中南大学地球科学与信息物理学院,湖南 长沙 410083
  • 收稿日期:2020-06-11 修回日期:2020-08-18 出版日期:2020-10-31 发布日期:2020-11-05
  • 通讯作者: 孔华 E-mail:gh301@126.com;konghua2006@126.com
  • 作者简介:高华(1968-),男,湖南衡阳人,高级工程师,从事地质找矿勘查工作。gh301@126.com
  • 基金资助:
    湖南省核工业地质局科研项目“雪峰弧形带南西段金、锑矿成矿条件分析及找矿前景研究”(KY2018-301-01)

Composition Typomorphic Characteristics of Pyrite and Its Genetic Implication for Gold Deposits in Tongdao County,Hunan Province

Hua GAO1(),Yuhua XIE1,Liang YANG1,Zhe ZHANG1,Xinxing KE1,Xiaomin LIU1,Jianbiao LUO2,3,Qi LIU2,3,Jishun LIU2,3,Zhilin WANG2,3,Hua KONG2,3()   

  1. 301.301 Brigade,Hunan Nuclear Industry Geological Bureau,Changsha 410114,Hunan,China
    2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals,Ministry of Education,Central South University,Changsha 410083,Hunan,China
    3.School of Geoscience and Info-Physics,Central South University,Changsha 410083,Hunan,China
  • Received:2020-06-11 Revised:2020-08-18 Online:2020-10-31 Published:2020-11-05
  • Contact: Hua KONG E-mail:gh301@126.com;konghua2006@126.com

摘要:

通道地区位于雪峰弧形带西南段,区内金矿化较普遍,产出有茶溪、黄垢和金坑等中小型金矿床,但该区研究程度很低。为探讨矿床成因,对金矿床中不同产状的黄铁矿进行了成因矿物学研究。岩矿鉴定结果显示:3个金矿床黄铁矿晶形主要为立方体、五角十二面体和他形—半自形粒状;MLA面扫描结果显示,黄垢矿区金主要以裂隙金或包体金赋存在黄铁矿中。EPMA常量元素分析结果显示:黄铁矿总体上富铁亏硫,含少量砷。3个矿区黄铁矿的δFe、δS值分布集中,与变质热液型金矿床的特征一致。LA-ICPMS微量元素分析结果显示:金坑矿区黄铁矿的Co/Ni比值投点多数小于1,反映流体以变质热液为主;黄垢矿区的黄铁矿大致可划分为两类,其中产于细脉中的黄铁矿Co/Ni比值接近于0,为热液成因。As-Co-Ni图解显示金坑和黄垢矿区的黄铁矿主要成因类型为变质热液型,成矿温度应为中—低温。比较而言,金坑矿区黄铁矿中成矿指示元素(如Au、Ag、Cu、Pb、Zn等)含量较高且稳定,暗示金坑矿区比黄垢矿区更有利于形成中—大规模的金矿。总体上通道地区金矿剥蚀较浅,深部仍有很大的找矿前景。

关键词: 黄铁矿, 成分标型, 金矿床, 矿床成因, 通道地区, 湖南省

Abstract:

Tongdao county is located in southwest of Xuefeng arc structure belt,there are some small and medium-sized gold deposit such as Jinkeng deposit,Huanggou deposit and Chaxi deposit.Few research have done in this area,in order to discuss the genesis of gold deposit,this paper focuses on the genetic mineralogy study about pyrites of different occurrence.The macroscopic geological characteristics of the three deposits show that the wall rocks of the ore body are all low-grade metamorphic sandstone slate.Strong silicification alteration and fading alteration occurred in the surrounding rocks near ore-bearing quartz veins in Jinkeng mining area.The dip angle of quartz vein is steep in Huanggou mining area,and the tendency is southeast or northwest,the fracture filled with quartz vein is shear fracture.The ore bearing quartz veins in Chaxi mining area are mainly NW steeply dipping veins and their branch gently dipping veins.The gold orebodies are mainly quartz vein type or altered rock type.The ore contains pyrite,arsenopyrite and other sulfides.Generally,the ore vein with more pyrite content has a relatively high gold grade,suggesting that pyrite is the main gold-carrying mineral.Rock-mineral determination show that pyrite is mainly cubic and pentagonal dodecahedron and other semi automorphic granular in three gold deposit.MLA(mineral liberation analyzer) scanning results show that gold was produced in pyrite farcture or pyrite intergranular in Huanggou gold deposit.Major element results analyzed by EPMA show that the pyrites in general are rich in iron and deficient in sulfur,containing a small amount of arsenic.The δFe-δS diagram shows that all points from three deposit concentrate in a narrow range,which is consistent with metamorphic hydrothermal gold deposit.Trace elements results analyzed by LA-ICPMS show that average Co/Ni value for Jinkeng pyrite samples is less than 1,which implies the fluid are from metamorphic water mainly.There are two kinds of pyrites in Huangou deposit,one produced in fine quartz vein,the Co/Ni value is near 0,the other zonal pyrite produced in wall rocks near ore,the Co/Ni value of core and edge are quite different,which implies the zonal pyrites have multi-stage growth history.As-Co-Ni diagram show that pyrites from Jinkeng and Huanggou deposit are mainly metamorphic hydrothermal type,and the metallogenic temperature should be medium low temperature.Compared with that of Huanggou gold deposit,pyrites collected from Jinkeng deposit has higher trace element content(e.g.,Au,Ag,Cu,Pb and Zn),which suggests that the Jinkeng area has more better prospecting potential.According to less private mining,we infer the gold body are eroded slightly,there is still great prospecting in deep part of the deposit.

Key words: pyrite, composition typomorphism, gold deposit, genesis of deposit, Tongdao area, Hunan Province

中图分类号: 

  • P618.51

图1

雪峰弧形构造带地质简图[22]1.白垩系—上第三系;2.上三叠统—侏罗系;3.泥盆系—上三叠统;4.震旦系—志留系;5.板溪群和冷家溪群;6.断裂;7.花岗岩体;8.矿点;9.金矿;10.锑矿;11.钨矿"

图2

金坑—黄垢矿区地质图[23]1.下震旦统洪江组灰绿色含冰碛砾砂岩;2.下震旦统大塘坡组灰黑色含炭页岩偶夹含锰灰岩;3.上震旦统江口组上段灰绿色冰碛砾长石石英砂岩夹页岩;4.上震旦统江口组下段灰绿色冰碛砾砂岩和泥岩;5.板溪群漠滨组上段灰绿色绢云母板岩夹变质砂岩;6.漠滨组下段灰绿色绢云母板岩夹变质石英砂岩;7.基性岩;8.正断层及产状;9.逆断层及产状;10.平移断层;11.性质不明断层;12.地层界线;13.矿脉及编号;14.推测矿脉;15.产状;16.平行不整合界线;17.矿区范围"

图3

茶溪矿区地质图[24]1.下震旦统南沱组;2.下震旦统湘锰组;3.下震旦统江口组第三段;4.下震旦统江口组第二段;5.地质界线;6.矿体及编号;7.产状"

表1

金矿床岩矿石样品采集信息"

矿床名称采样位置样品编号样品简单描述矿石矿物及其组合
金坑地表露头SIF硅化带24-11含硫化物石英脉毒砂、黄铁矿
地表露头V1号脉24-12含硫化物石英脉毒砂、黄铁矿、黄铜矿
ZK601中H38-718-11硅化石英砂岩黄铁矿、毒砂
黄垢Ⅰ号矿体25-02含薄膜状黄铁矿脉石英脉黄铁矿
Ⅰ号矿体25-04含硫化物细脉围岩金红石、黄铁矿、闪锌矿
Ⅱ号矿体25-16蚀变岩黄铁矿
茶溪坑道内NW向矿体26-02含矿石英脉黄铁矿、赤铁矿
坑道内SN向矿体26-06含矿石英脉黝铜矿、黄铜矿、自然银

图4

通道地区金矿床含矿石英脉野外特征(a)金坑V6脉,浅变质板岩(①)中硅化蚀变破碎带(290°~320°∠60°~80°),矿体边界有褪色化带(②),石英脉(Qtz)破碎,带内硅化强烈,见砂糖状石英颗粒(③);(b)金坑V1脉,陡倾岩壁上见多组分支复合含毒砂等硫化物石英脉;(c)黄垢矿区LD4,洞壁见蚀变破碎带石英脉(产状180°∠25°);(d)黄垢矿区BT4,岩壁上见多条含硫化物石英细脉(300°∠65°),表面具褐铁矿化;(e)茶溪矿区,缓倾含硫化物石英脉(270°∠20°);(f)茶溪矿区V7-2矿脉,陡倾石英脉(200°∠78°),有羽状分叉支脉,含绿泥石和硫化物"

图5

金坑矿区矿石显微组构(a)含硫化物团块石英脉;(b)硅化含砾砂岩中含硫化物团块;(c)黄铁矿(PyJ)被包裹在毒砂中,黄铁矿呈半自形—自形,右侧颗粒为五角十二面体;(d)半自形毒砂交代自形立方体外形黄铁矿;(e)毒砂、黄铁矿和黄铜矿共生,黄铁矿为自形五角十二面体,黄铜矿为他形粒状;(f)半自形闪锌矿交代黄铁矿,黄铁矿有五角十二面体和立方体,以五角十二面体外形为主;(g)闪锌矿呈脉状交代毒砂;(h)、(i)呈斑点状产出的自形黄铁矿被针铁矿完全交代,呈假象结构,黄铁矿呈五角十二面体和立方体外形;Apy-毒砂;Py-黄铁矿;Ccp-黄铜矿;Sp-闪锌矿;Gt-针铁矿"

图6

黄垢矿区矿石显微组构(a)裂隙中含黄铁矿石英脉;(b)蚀变砂岩,其裂隙中以脉状产出硫化物,基质中也含硫化物;(c)含硫化物团块砂质板岩;(d)PyH-1为呈脉状产出在石英脉裂隙中的他形—半自形黄铁矿;(e)PyH-2产在蚀变砂岩裂隙中,呈半自形中粗粒或他形—半自形细粒;(f)PyH-3为产于蚀变砂岩中自形的具五角十二面体外形黄铁矿;(g)金红石交代半自形黄铁矿,金红石晚于黄铁矿生成;(h)PyH-4为自形立方体外形的黄铁矿,具环带结构,核部裂隙凹坑多,向边部变纯净,PyH-5为前者周围他形—半自形较细粒黄铁矿;(i)毒砂被拉长呈拔丝状,与黄铁矿共生,并交代黄铁矿;(j)毒砂交代黄铁矿,晚于黄铁矿生成;(k)针铁矿交代自形黄铁矿呈骸晶结构;(l)针铁矿交代自形黄铁矿呈假象结构;Apy-毒砂;Py-黄铁矿;Rt-金红石;Gt-针铁矿"

图7

茶溪矿区矿石显微组构(a)含硫化物绿泥石化石英脉;(b)黝铜矿裂隙中含少量黄铁矿及自然银;(c)产于石英脉裂隙中的半自形黄铁矿;(d)半自形黝铜矿与少量黄铜矿;(e)黄铁矿沿石英颗粒边缘产出,部分黄铁矿被针铁矿完全交代呈假象结构;(f)针铁矿沿裂隙充填;Py-黄铁矿;Slv-自然银;Ccp-黄铜矿;Gt-针铁矿;Td-黝铜矿"

图8

黄垢矿区金的赋存状态(a)银金矿包裹于黄铁矿中;(b)自然金产于绿泥石与黄铁矿粒间;(c)银金矿产于黄铁矿粒间;Py-黄铁矿;Gt-针铁矿;Au-自然金;Chl-绿泥石"

表2

黄铁矿电子探针分析结果"

样号类别产状自形程度AsSFeS/Fe
24-11-17PyJ石英大脉中半自形0.2654.3347.372.00
24-11-19PyJ石英大脉中半自形0.3554.3247.262.01
24-12-10PyJ石英大脉中半自形0.2754.3047.302.00
25-02-02PyH-1细脉中他形0.2354.0147.182.00
25-02-03PyH-1细脉中他形0.1853.8946.882.01
25-02-04PyH-1细脉中他形0.2253.7646.632.01
25-02-05PyH-1细脉中他形0.1753.9046.902.01
25-02-06PyH-1细脉中他形0.2353.9147.591.98
25-04-01PyH-3细脉中他形0.2053.7747.341.98
25-04-04PyH-3细脉中他形0.6153.2246.811.99
25-04-05PyH-3细脉中他形0.1853.8247.611.97
25-04-06PyH-3细脉中他形0.3452.1146.761.95
25-04-09PyH-3细脉中他形0.3653.9747.401.99
25-04-10PyH-3细脉中他形0.1853.9247.291.99
25-04-11PyH-3细脉中他形0.2253.4946.931.99
25-16-01PyH-4环带自形(核)0.3653.4547.611.96
25-16-02PyH-4环带自形0.9253.7147.331.98
25-16-07PyH-4环带自形(核)0.3553.3347.741.95
25-16-08PyH-4环带自形0.2253.7447.571.97
25-16-09PyH-4环带自形0.4053.5647.591.97
25-16-10PyH-4环带自形(边)0.2053.8947.811.97
25-16-11PyH-4环带自形(核)0.6151.8246.311.95
25-16-12PyH-4环带自形0.2053.8947.301.99
25-16-16PyH-4环带自形0.1953.9147.651.98
25-16-19PyH-4环带自形(核)0.3153.5047.771.96
25-16-20PyH-4环带自形0.2253.6347.811.96
25-16-21PyH-4环带自形0.1853.9447.801.97
25-16-22PyH-4环带自形0.4353.5546.911.99
25-16-23PyH-4环带自形(边)0.2753.9347.741.97
25-16-27PyH-4环带自形0.4453.6047.421.97
25-16-28PyH-4环带自形0.1754.2747.432.00
25-16-29PyH-4环带自形(边)0.2054.3647.212.01
25-16-24PyH-5细粒黄铁矿他形0.2154.3647.092.02
25-16-25PyH-5细粒黄铁矿半自形2.8352.3546.651.96
26-02-03PyC石英大脉中他形1.8852.1846.461.96
26-02-04PyC石英大脉中他形0.8953.846.902.00
26-02-05PyC石英大脉中他形2.5252.1447.061.93

表3

黄铁矿LA-ICPMS微量元素分析结果"

类别样号FeAsAuCoNiCuZnPbAgTiCrCo/Ni
PyJ24-11-01L46.45646.132.212.337.0719.2830.152.157.704.610.820.33
24-11-02L46.391 431.283.634.9811.70139.1732.731.3610.493.770.770.43
24-11-03L46.371 828.242.5722.9117.0520.3631.112.523.683.500.251.34
24-11-04L46.43978.372.5618.1118.3027.9215.935.2118.903.300.470.99
24-11-05L46.351 062.6814.0730.6317.8224.9413.815.3428.893.170.771.72
PyH-125-02-01L46.4441.850.021.734.145.460.000.000.003.412.040.42
25-02-02L46.498.890.010.9911.6838.562.150.010.293.090.780.08
25-02-03L46.4962.290.001.2410.256.160.000.000.482.665.330.12
25-02-04L46.4819.530.012.9919.3711.873.100.000.244.180.260.15
25-02-05L46.4827.910.020.160.9288.751.930.000.053.780.800.17
PyH-225-04-01L46.4910.410.00126.04116.601.260.000.700.003.480.221.08
25-04-07L46.5114.080.005.3521.690.350.000.120.013.600.380.25
25-04-08L46.42122.170.01782.49204.351.086.991.030.033.220.163.83
25-04-09L46.493.350.0173.3073.120.576.930.440.032.910.161.00
25-04-10L46.527.140.009.7628.380.547.670.220.013.020.260.34
PyH-325-04-02L46.41801.530.15323.7594.965.322.162.410.163.840.143.41
25-04-03L46.482.840.001.166.893.062.810.000.013.670.890.17
25-04-04L46.475.900.0316.5935.34158.201.170.080.203.140.760.47
25-04-05L46.486.790.0052.09118.15108.532.140.000.593.820.590.44
25-04-06L46.5010.420.003.8711.6522.233.890.000.173.740.680.33
PyH-425-16-01L45.872 658.040.044.5983.002.146.070.020.0710.744.180.06
25-16-02L46.5066.780.003.1669.480.770.000.000.032.640.500.05
25-16-03L46.5321.090.000.325.352.510.000.010.012.710.080.06
25-16-05L46.401 201.340.005.2590.481.854.540.020.003.450.870.06
25-16-06L46.233 594.840.000.328.543.800.000.010.043.381.390.04
25-16-07L46.5117.910.000.061.460.217.710.000.003.730.140.04
PyH-525-16-04L46.431 149.250.015.2285.031.370.000.010.003.760.170.06
25-16-08L45.2966.900.002.1655.1041.180.000.030.0713.876.920.04
25-16-09L46.4770.510.012.3063.4351.670.000.020.023.973.560.04
25-16-10L46.46286.990.002.0261.754.754.750.000.003.650.290.03

图9

黄铁矿δFe-δS(a)和(Fe+S)-As图解(b)[20]"

图10

黄铁矿As-S(a)和Co-Ni(b)相关性图解"

图11

黄铁矿As-Co-Ni图解[17]注:Ⅰ和Ⅱ区完全重合,分别表示火山热液和岩浆热液;Ⅲ区表示热水淋滤型(卡林型);Ⅳ区表示变质热液型"

1 王成辉,徐珏,黄凡,等.中国金矿资源特征及成矿规律概要[J].地质学报,2014,88(12):2315-2325.
Wang Chenghui,Xu Jue,Huang Fan,et al.Resources characteristics and outline of regional metallogeny of gold deposits in China[J].Acta Geologica Sinica,2014,88(12):2315-2325.
2 刘清泉.湘东北地区正冲金矿床地质地球化学特征与矿床成因[R].长沙:中南大学,2018.
Liu Qingquan.Geological and geochemical characteristics and ore genesis of the Zhengchong gold deposit in the northeastern Hunan Province,China[R].Changsha:Central South University,2018.
3 何谷先.湘西雪峰山地区金矿床地质特征及其分布规律[J].黄金,1989,10(5):2-6.
He Guxian.The geological features and the regularity of distribution of gold deposits in the Zone of Xuefeng Mountain,West Hunan[J].Gold,1985,10(5):2-6.
4 罗献林.湖南金矿床的成矿特征与成因类型[J].桂林冶金地质学院学报,1991,11(1):23-33.
Luo Xianlin.Main characteristics and genetic types of gold ore deposits in Hunan[J].Journal of Guilin College of Geology,1991,11(1):23-33.
5 彭建堂,胡阿香,肖静芸,等.湖南变质岩地体中两类金矿的成矿作用研究[C]//第八届全国成矿理论与找矿方法学术讨论会论文摘要文集.北京:中国矿物岩石地球化学学会矿床地球化学专业委员会,中国地质学会矿床地质专业委员会,矿床地球化学国家重点实验室,2017:146.
Peng Jiantang,Hu Axiang,Xiao Jingyun,et al.Study on mineralization of two types of gold deposits in metamorphic terranes in Hunan Province[C]// Abstracts of the 8th National Symposium on Metallogenic Theory and Prospecting Methods.Professional Committee of Mineral Deposit Geochemistry of Chinese Society for Mineralogy Petrology and Geochemistry,Professional Committee of Mineral Deposit Geology of Geological Society of China,State Key Laboratory of Ore Deposit Geochemistry,2017:146.
6 苏康明,曾勇.雪峰弧形构造带金矿类型及分布特征[J].黄金,2007,28(4):19-23.
Su Kangming,Zeng Yong.Gold deposit type and its distribution characteristic in Snowberg arc structure belt[J].Gold,2007,28(4):19-23.
7 张景荣,罗献林.论华南地区内生金矿床的形成时代[J].桂林冶金地质学院学报,1989,9(4):369-379.
Zhang Jingrong,Luo Xianlin.Metallogenic epoches of endogenic gold deposits in South China[J].Journal of Guilin College of Geology,1989,9(4):369-379.
8 刘继顺.韧性剪切带中金成矿研究的若干问题[J].地质论评,1996,42(2):123-128.
Liu Jishun.Some problems in the study of gold mineralization in ductile shear zones[J].Geological Review,1996,42(2):123-128.
9 彭建堂,戴塔根.雪峰地区金矿成矿时代问题的探讨[J].地质与勘探,1998,34(4):39-43.
Peng Jiantang,Dai Tagen.On the mineralization epoch of the Xuefeng gold metallogenic province[J].Geology and Prospecting,1998,34(4):39-43.
10 罗献林.论湖南前寒武系金矿床的成矿物质来源[J].桂林冶金地质学院学报,1990,10(1):13-26.
Luo Xianlin.On the source of ore-forming substances of precambrian gold deposits in Hunan province[J].Journal of Guilin College of Geology,1990,10(1):13-26.
11 毛景文,李红艳.江南古陆某些金矿床成因讨论[J].地球化学,1997,26(5):71-81.
Mao Jingwen,Li Hongyan.Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,1997,26(5):71-81.
12 鲍振襄,万容江,鲍珏敏.湘西钨锑金矿床成矿系列及其稳定同位素研究[J].北京地质,1999(1):11-17.
Bao Zhenxiang,Wan Rongjiang,Bao Juemin.The metallogenetic series of the W-Sb-Au deposits and its stable isotopic research in Western Hunan Province[J].Beijing Geology,1999(1):11-17.
13 陈柏林.论中国金矿床成矿时代特点[J].地质地球化学,2002,30(2):66-73.
Chen Bolin.A discussion on the metallogenic epoch of gold deposits in China[J].Geology-Geochemistry,2002,30(2):66-73.
14 彭渤,Frei Robert,涂湘林.湘西沃溪W-Sb-Au矿床白钨矿Nd-Sr-Pb同位素对成矿流体的示踪[J].地质学报,2006,80(4):561-570.
Peng Bo,Frei Robert,Tu Xianglin.Nd-Sr-Pb isotopic geochemistry of Scheelite from the Woxi W-Sb-Au deposit,Western Hunan:Implications for sources and evolution of ore-forming fluids[J].Acta Geologica Sinica,2006,80(4):561-570.
15 刘晓敏,杨亮.湖南省通道地区金、铜多金属矿成矿条件分析及找矿前景研究[J].世界有色金属,2017(10):16-17.
Liu Xiaomin,Yang Liang.Hunan Tongdao region gold and copper polymetallic metallogenic conditions analysis and prospecting future research[J].World Nonferrous Me-tals,2017(10):16-17.
16 徐国风,邵洁涟.黄铁矿的标型特征及其实际意义[J].地质论评,1980,26(6):541-546.
Xu Guofeng,Shao Jielian.Typomorphic characteristics of pyrite and its practical significance[J].Geological Review,1980,26(6):541-546.
17 严育通,李胜荣,贾宝剑,等.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘,2012,19(4):214-226.
Yan Yutong,Li Shengrong,Jia Baojian,et al.Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J].Earth Science Frontiers,2012,19(4):214-226.
18 庞保成,杨东生,周志,等.湖南龙山金锑矿黄铁矿微量元素特征及其对成矿过程的指示[J].现代地质,2011,25(5):832-845.
Pang Baocheng,Yang Dongsheng,Zhou Zhi,et al.Trace elements in pyrites and their implication for hydrothermal ore-forming process in Longshan gold-antimony deposits,Hunan,China[J].Geoscience,2011,25(5):832-845.
19 刘纯波,张术根,黄超文,等.云南东川播卡金矿床黄铁矿成因矿物学特征研究[J].黄金科学技术,2016,24(5):40-47.
Liu Chunbo,Zhang Shugen,Huang Chaowen,et al.Genetic mineralogical characteristics of pyrite in Boka gold deposit from Dongchuan Area,Yunnan Province[J].Gold Science and Technology,2016,24(5):40-47.
20 李洪梁,李光明.不同类型热液金矿床主成矿期黄铁矿成分标型特征[J].地学前缘,2019,26(3):202-210.
Li Hongliang,Li Guangming.Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits[J].Earth Science Frontiers,2019,26(3):202-210.
21 贾宝华.湖南雪峰隆起区构造变形研究[J].中国区域地质,1994(1):65-71.
Jia Baohua.Tectonic deformation of the Xuefeng uplift area in Hunan[J].Regional Geology of China,1994(1):65-71.
22 杨冲.雪峰弧形构造带金(锑)控矿构造分析及找矿方向研究[D].湘潭:湖南科技大学,2012.
Yang Chong.Analysis on Ore-controlling Structure and Research on Prospecting Direction of Gold-antimony in Xuefeng Arc Structure Belt[D].Xiangtan:Hunan University of Science and Technology,2012.
23 熊建忠.黄垢野外总结[R].长沙:湖南核工业地质局三〇一大队,2017.
Xiong Jianzhong.Field investigation summary report of Huanggou gold deposit[R].Changsha:301 Brigade,Hunan Nuclear Industry Geological Bureau,2017.
24 伍式崇.茶溪金矿床详查报告[R] .株洲:湖南地质矿产勘查开发局四一六队,2014.
Wu Shichong.Detailed exploration report for Chaxi gold deposit[R].Zhuzhou:Team 416 of Hunan Geological Exploration Bureau,2014.
25 曹新志,范永香,王燕.湖南漠滨金矿床明金特征及其形成机理探讨[J].地质科技情报,1991,10(4):59-62.
Cao Xinzhi,Fan Yongxiang,Wang Yan.Research of the characteristic and genetic mechanism of the visible gold from Mobin gold deposit,Hunan Province[J].Geological Science and Technology Information,1991,10(4):59-62.
26 Chen L,Liu Y S,Hu Z C,et al.Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J].Chemical Geology,2011,284(3/4):283-295.
27 Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1/2):34-43.
28 Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology,2010,51:537-571.
29 周学武,邵洁涟,边秋娟.四川松潘东北寨金矿黄铁矿标型特征研究[J].地球科学——中国地质大学学报,1994,19(1):52-59.
Zhou Xuewu,Shao Jielian,Bian Qiujuan.Study on typomorphic characteristics of pyrite from Dongbeizhai gold deposit,Sichuan Province[J].Earth Science—Journal of China University of Geosciences,1994,19(1):52-59.
30 邵靖邦,王濮,陈代章.湘西沃溪金锑钨矿床黄铁矿矿物学研究[J].湖南地质,1996,15(3):151-158.
Shao Jingbang,Wang Pu,Chen Daizhang.Mineralogical studies on pyrites in Woxi Au-Sb-W deposit,Western Hunan[J].Hunan Geology,1996,15(3):151-158.
31 彭南海.湖南沅陵沃溪金—锑—钨矿床地质地球化学特征及成因研究[D].长沙:中南大学,2017.
Peng Nanhai.Study on Geological and Geochemical Characteristics and Genesis of Woxi Au-Sb-W Deposit,Yuanling,Hunan Province[D].Changsha:Central South University,2017.
32 赵振华,赵惠兰,杨蔚华,等.碓边和武山寒武—奥陶系界线剖面微量元素地球化学特征[J].地球化学,1987,16(2):99-112.
Zhao Zhenhua,Zhao Huilan,Yang Weihua,et al.Trace element geochemical characteristics of cambrian-ordovician boundary strata in the Duibian and Wushan profiles[J].Geochimica,1987,16(2):99-112.
33 赵晓燕,杨竹森,张雄,等.邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义[J].地学前缘,2019,44(6):2052-2063.
Zhao Xiaoyan,Yang Zhusen,Zhang Xiong,et al.In situ trace element analysis of pyrite from Bangbu orogenic gold deposit and its metallogenic significance[J].Earth Science,2019,44(6):2052-2063.
34 牛贺才,马东升.湘西层控金矿床成因机制的研究[J].矿床地质,1992,11(1):65-75.
Niu Hecai,Ma Dongsheng.Metallogenesis of stratabound gold deposits in West Hunan[J].Mineral deposits,1992,11(1):65-75.
[1] 袁梓焜, 邵拥军, 刘清泉, 张毓策, 王智琳. 湘东北万古金矿田江东金矿床成因——流体包裹体和H-O同位素制约[J]. 黄金科学技术, 2024, 32(4): 559-578.
[2] 苏力, 朱海军, 谷守江, 杨兴科, 赵翌辰, 孙雪平, 何虎军, 韩珂, 张玉瑜, 谭江, 谢愿龙, 张龙, 高立博. 宁夏海原西华山地区金矿床地质地球化学特征及成因分析[J]. 黄金科学技术, 2024, 32(2): 191-206.
[3] 俞炳, 丁正江, 陈伟军, 李肖, 刘彩杰, 薛建玲, 曾庆栋, 范宏瑞, 吴金检, 张琪彬. 胶东西岭金矿床黄铁矿热电性特征及深部找矿意义[J]. 黄金科学技术, 2024, 32(2): 207-219.
[4] 宋高瑞, 翟新伟, 王二腾, 武磊, 陈万峰, 郑菲菲, 王海东, 王金荣. 甘肃花牛山金矿床成矿流体性质及矿床成因[J]. 黄金科学技术, 2023, 31(6): 873-887.
[5] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[6] 许方颖, 邹艳红, 易卓炜, 杨福强, 毛先成. 基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例[J]. 黄金科学技术, 2023, 31(5): 721-735.
[7] 宁钧陶, 黄宝亮, 董国军, 周岳强, 高卓龙, 康博. 湘东北热液型钴矿床中含钴矿物特征及其对成矿的指示意义[J]. 黄金科学技术, 2023, 31(4): 531-545.
[8] 樊忠平, 张望, 王卫. 陕西省山阳—商南金矿成矿规律及找矿预测研究[J]. 黄金科学技术, 2023, 31(4): 560-579.
[9] 陈磊,段宝福,吕道,曾建朋,张朔,曾兴富,黄美俊. 东天山卡拉塔格地区玉带铜矿床地质特征及成因[J]. 黄金科学技术, 2023, 31(3): 396-407.
[10] 王智琳,张凯,许德如,邹少浩,王宇非. 东昆仑驼路沟矿床中钴成矿过程的矿物学示踪[J]. 黄金科学技术, 2023, 31(2): 175-189.
[11] 吴华浩,邵拥军,刘清泉,王智琳,张毓策,袁梓焜. 湘东北正冲金矿床成因:年代学和硫同位素制约[J]. 黄金科学技术, 2023, 31(2): 190-205.
[12] 余应龙,周岳强,董玉宁,时承华. 湖南安化大溶溪白钨矿床侧伏规律研究及意义[J]. 黄金科学技术, 2023, 31(2): 252-261.
[13] 张勇,张爱奎,何书跃,刘智刚,刘永乐,张鹏,孙非非. 东昆仑祁漫塔格地区库德尔特金矿区花岗闪长岩的时代、成因及其构造意义[J]. 黄金科学技术, 2023, 31(1): 1-14.
[14] 寸小妮,薛玉山,王瑜亮,刘新伟. 陕西龙头沟金矿黄铁矿标型特征及其找矿意义[J]. 黄金科学技术, 2023, 31(1): 64-77.
[15] 张胜伟,邓腾,许德如,周岳强,董国军,李增华,马文,许可,海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!