img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (5): 743-752.doi: 10.11872/j.issn.1005-2518.2020.05.065

• 采选技术与矿山管理 • 上一篇    下一篇

高海拔矿山独头巷道通风降尘方法优选

李泽佑(),黄锐(),赵淑琪,沈学,吴娥   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-03-30 修回日期:2020-05-25 出版日期:2020-10-31 发布日期:2020-11-05
  • 通讯作者: 黄锐 E-mail:1277136677@qq.com;huangrui@csu.edu.cn
  • 作者简介:李泽佑(1996-),男,山东聊城人,硕士研究生,从事高寒高海拔矿井通风除尘与应急技术研究工作。1277136677@qq.com
  • 基金资助:
    国家“十三五”重点研发计划项目“高海拔高寒地区矿山人机功效与应急救援技术”(2018YFC0808406);中南大学研究生自主探索创新项目“高海拔矿山掘进巷道通风降尘方法优选及粉尘运移规律研究”(2020zzts720)

Ventilation Method Optimization of Dust Extraction in an Excavation Roadway of High-altitude Mine

Zeyou LI(),Rui HUANG(),Shuqi ZHAO,Xue SHEN,E WU   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-03-30 Revised:2020-05-25 Online:2020-10-31 Published:2020-11-05
  • Contact: Rui HUANG E-mail:1277136677@qq.com;huangrui@csu.edu.cn

摘要:

为优选高海拔矿山独头巷道通风降尘方法,研究粉尘颗粒扩散和分布规律,以云南迪庆普朗矿海拔3 700 m的一条独头巷道为研究对象,利用Fluent软件进行数值模拟研究。建立基于长压短抽、长抽短压和压入式通风方法的6种通风方案模型,对6种方案的风流场、粉尘颗粒分布情况以及呼吸面粉尘颗粒浓度进行分析和比较,并选择压风口与掘进面的距离和风筒中心点与地面的距离2个参数对压入式通风除尘系统的压入风筒位置进行优化。对最佳方案的粉尘颗粒质量浓度及粉尘运移规律进行分析,并与相同通风条件下的平原矿山独头巷道进行对比。研究结果表明:对于该高海拔矿山独头巷道,选择压入式通风方法,压入风筒布置在巷道正中央正上方位置,且压风口与掘进面的距离Z=1.3S、风筒中心点与地面的距离L=5D时,通风降尘效果最理想;在压入式通风条件下,高海拔矿山除尘效率优于平原矿山。

关键词: 高海拔矿山, 独头巷道, 压入式通风, 混合式通风, 除尘, 粉尘分布, 数值模拟

Abstract:

With the implementation of the grand western development program,a number of mines located at high altitude have appeared in China,where the special environmental factors of low air pressure and low temperature have brought challenge to the dust extraction work of the mines.The large amount of productive dust will cause serious damage to human respiratory system and is one of the main threats to the health of mine workers.The working face of the excavation roadway is one of the largest productive dust sources in underground mining operation.Therefore,it is of great engineering value and theoretical significance to study the dust extraction method of excavation roadway in high-altitude mine.In order to optimize the ventilation method of dust extraction in an excavation roadway of high-altitude mine and study the law of dust particle diffusion and distribution,the numerical simulation was conducted with computational fluid dynamics software Fluent and an excavation roadway (with section shape of three centered arch) at an altitude of 3 700 m in Pulang mine was taken as research object.The Lagrange discrete phase model was selected to calculate the gas-solid flow,which allows the exchange of momentum,mass and energy between continuous phase and discrete phase but ignores the interaction between particles.Through analyzing six different ventilation scheme models about far-forcing-near-exhausting(FFNE),near-forcing-far-exhausting(NFFE) and pure forcing(PF) established in this paper,the airflow field,dust particle distribution and respiratory zone dust particle concentration of them were analyzed and compared to optimize the better ventilation method.The distance between the pressure vent and the heading face and the distance between the center of the air duct and the ground were set as parameters to optimize the position of the air duct of the blowing ventilation.The mass concentration of dust particles and the law of dust particle diffusion in the selected plan were analyzed and compared with the excavation roadway in plain mine under the same ventilation condition.The following conclusions can be drawn:For the excavation roadway at an altitude of 3 700 m in Pulang mine,the best solution for dust extraction is using blowing ventilation scheme where the air duct is arranged in the position directly above the center of the roadway,while the distance between the pressure vent and the heading face is set to 16 m, and the distance between the center of the air duct and the ground is set to 3 m.The sedimentation of dust particles makes the mass concentration of dust particles is high at the bottom of the roadway and low at the top of the roadway.The mass concentration of dust particles at the cross section of the roadway (1 m,5 m,10 m,20 m,30 m) increases first and then decreases.The occurrence point of the maximum value of the dust particle mass concentration moves away from the working face with time,and its value generally decreases.Under the same ventilation condition,the dust extraction efficiency of high altitude mine is better than that of plain mine.

Key words: high-altitude mine, excavation roadway, forced ventilation, mixed ventilation, dust extraction, dust distribution, numerical simulation

中图分类号: 

  • TD72

图1

独头巷道的几何模型"

图2

独头巷道断面风管布置"

表1

各方案风筒布置位置"

方案编号通风方式压入风筒位置末端与掘进面的距离/m抽出风筒位置末端与掘进面的距离/m
方案一长压短抽A12B4
方案二长压短抽A12D4
方案三压入式C12--
方案四压入式A12--
方案五短压长抽A5B30
方案六短压长抽A5D30

表2

模型的参数设定"

参数设定值
空气密度/(kg·m-30.846
大气压力/Pa64 089
湍流模型标准k-epsilon模型
压入风筒风速/(m·s-112
抽出风筒风速/(m·s-17
水力直径DH/m0.6
湍流强度I/%3.2
喷射源类型面喷射(掘进面)
密度/(kg·m-32 200
开始/结束时间/s10/12
最小直径/m1×10-6
最大直径/m1×10-5
平均直径/m5×10-6
直径分布方式R-R分布
质量流率/(kg·s-10.0056
每步时间尺度/s0.1
计算步数3 000

图3

模型的网格划分"

表3

网格质量数据"

网格度量标准最小值最大值平均值标准差
偏斜度9.4×10-50.8260.2190.126
单元质量0.1090.9990.7930.221
正交质量0.2110.9990.8750.091

图4

风速分布"

图5

方案一巷道风流场风速分布图(Y=2.7 m)"

图6

各方案巷道风流场图"

图7

各方案巷道粉尘颗粒分布云图"

图8

各方案呼吸带粉尘颗粒质量浓度云图"

图9

各方案粉尘颗粒数量"

图10

巷道不同位置的粉尘颗粒质量浓度变化图"

图11

不同海拔高度下呼吸面的粉尘颗粒质量浓度变化图"

1 庞杰文,谢建林,卢国菊,等.长抽短压通风下综掘工作面粉尘分布特征研究[J].煤炭科学技术,2017,45(10):76-81,134.
Pang Jiewen,Xie Jianlin,Lu Guoju,et al.Study on dust distribution features of fully-mechanized heading face under long distance exhausted and short distance forced ventilation[J].Coal Science and Technology,2017,45(10):76-81,134.
2 聂文,马骁,程卫民,等.通风条件影响长压短抽掘进面粉尘扩散的仿真实验[J].中南大学学报(自然科学版),2015,46(9):3346-3353.
Nie Wen,Ma Xiao,Cheng Weimin,et al.Simulation experiment on effects of ventilation conditions on dust diffusion of the forced with long duct fan accompanied with short duct exhaustor in heading face[J].Journal of Central South University(Science and Technology),2015,46(9):3346-3353.
3 王晓珍.煤巷掘进过程中粉尘浓度影响因素分析[J].中国安全生产科学技术,2011,7(4):75-79.
Wang Xiaozhen.Analysis of dust concentration influence factor in coal roadway driving[J].Journal of Safety Science and Technology,2011,7(4):75-79.
4 龚剑,胡乃联,林荣汉,等.掘进巷道压入式通风粉尘运移规律数值模拟[J].有色金属(矿山部分),2015,67(1):65-68.
Gong Jian,Hu Nailian,Lin Ronghan,et al.Numerical simulation on dust migration law in excavation roadway with forced ventilation[J].Nonferrous Metals(Mine Section),2015,67(1):65-68.
5 Ren T,Zhang J,Wang Z W.Improved dust management at a longwall top coal caving(LTCC) face-A CFD modelling approach[J].Advanced Powder Technology:The Internation Journal of the Society of Powder Technology,Japan,2018,29‍(10):2368-2379.
6 Chang P,Xu G,Zhou F B,et al.Minimizing DPM pollution in an underground mine by optimizing auxiliary ventilation systems using CFD[J].Tunnelling and Underg-rou-nd Space Technology,2019,87(5):112-121.
7 Zheng Y,Lan H,Thiruvengadam M,et al.DPM dissipation experiment at MST’s experimental mine and comparison with CFD simulation[J].Journal of Coal Science and Engineering(China),2011,17(3):285-289.
8 Zhang Q,Zhou G,Qian X M,et al.Diffuse pollution characteristics of respirable dust in fully-mechanized mining face under various velocities based on CFD investigation[J].Journal of Cleaner Production,2018,184:239-250.
9 周智勇,胡培,韩章程,等.掘进工作面通风布置对粉尘分布规律的影响[J].中南大学学报(自然科学版),2018,49(9):2264-2271.
Zhou Zhiyong,Hu Pei,Han Zhangcheng,et al.Effect of heading face ventilation arrangement on regulation of dust distribution[J].Journal of Central South University(Science and Technology),2018,49(9):2264-2271.
10 胡方坤,时国庆,张义坤,等.基于非稳态DPM模拟研究长压短抽式掘进面粉尘运移规律[J].中国煤炭,2013,39(12):104-108.
Hu Fangkun,Shi Guoqing,Zhang Yikun,et al.Simulation of dust migration law at heading face under far-pressing-near-absorption ventilation based on DPM in unstable state[J].China Coal,2013,39(12):104-108.
11 Chang F L,Sun Y M,Chuang K H,et al.Work fatigue and physiological symptoms in different occupations of high-elevation construction workers[J].Applied Ergonomics,2009,40(4):591-596.
12 王孝东.高海拔金属矿山矿井通风系统研究[D].北京:北京科技大学,2015.
Wang Xiaodong.Research on Ventilation System of Metal Mine at High Altitude[D].Beijing:University of Science and Technology Beijing,2015.
13 龚剑,胡乃联,崔翔,等.高海拔矿山掘进通风方式优选[J].科技导报,2015,33(4):56-60.
Gong Jian,Hu Nailian,Cui Xiang,et al.Optimization of drifting ventilation method for high-altitude mine[J].Science and Technology Review,2015,33(4):56-160.
14 钟华,胡乃联,李国清,等.基于Fluent的高海拔矿山掘进工作面增氧通风技术研究[J].安全与环境学报,2017,17(1):81-185.
Zhong Hua,Hu Nailian,Li Guoqing,et al.On the oxygen-intensifying ventilation technology for plateau mine tunneling via the application of the software Fluent[J].Journal of Safety and Environment,2017,17(1):81-85.
15 何磊.高原矿山独头巷道增氧通风数值模拟研究[J].现代矿业,2011(2):37-40.
He Lei.Study on oxygen enhancing ventilation in blind drift at plateau mine by numerical simulation[J].Modern Mining,2011(2):37-40.
16 李蓉蓉,李孜军,赵淑琪,等.基于CFD的高海拔矿山掘进面通风增氧方案优化[J].中国安全生产科学技术,2020,16(2):54-60.
Li Rongrong,Li Zijun,Zhao Shuqi,et al.Optimization of aeration scheme with heading face ventilation in high-altitude mine based on CFD[J].Journal of Safety Science and Technology,2020,16(2):54-60.
17 刘子龙,杨洪英,佟琳琳,等.高海拔环境下氧化铜矿浮选优化试验研究[J].黄金科学技术,2019,27(4):589-597.
Liu Zilong,Yang Hongying,Tong Linlin,et al.Experimental study on flotation optimization of copper oxide ore in high altitude enviroment[J].Gold Science and Technology,2019,27(4):589-597.
18 龚剑,胡乃联,林荣汉,等.高海拔矿山掘进面长压短抽式通风粉尘分布数值模拟[J].金属矿山,2014,43(12):203-208.
Gong Jian,Hu Nailian,Lin Ronghan,et al.Numerical si-mulation of dust distribution with far-pressing-near-absorption ventilation in an excavation roadway of high-altitude mine[J].Metal Mine,2014,43(12):203-208.
19 张德存.三心拱主要几何参数间系数值的理论修正[J].铀矿冶,2018,37(2):112-115.
Zhang Decun.Theory correction among coefficient values of principal geometrical parameters of three centered arch[J].Uranium Mining and Metallurgy,2018,37(2):112-115.
20 程卫民.矿井通风与安全[M].北京:煤炭工业出版社,2016.
Cheng Weimin.Mine Ventilation and Safety[M].Beijing:Coal Industry Press,2016.
21 Adamczyk W P,Klimanek A,Bialecki R A,et al.Comparison of the standard Euler-Euler and hybrid Euler-Lagrange approaches for modeling particle transport in a pilot-scale circulating fluidized bed[J].China Particuology,2014,15(4):129-137.
22 中华人民共和国国家质量监督检验检疫总局,国家标准化管理委员会.金属非金属矿山安全规程:GB16423-2006[S].北京:中国标准出版社,2006.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,Administration Standardization.Safety regulations for metal and nonmetal mines:GB16423-2006[S].Beijing:Standards Press of China,2006.
[1] 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653.
[2] 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457.
[3] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[4] 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344.
[5] 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131.
[6] 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169.
[7] 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74.
[8] 周昌微, 谢贤平, 都喜东. 基于曲线拟合和神经网络的独头巷道CO浓度预测研究[J]. 黄金科学技术, 2024, 32(1): 75-81.
[9] 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943.
[10] 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720.
[11] 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810.
[12] 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604.
[13] 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752.
[14] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[15] 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!