img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (5): 753-760.doi: 10.11872/j.issn.1005-2518.2020.05.052

• 采选技术与矿山管理 • 上一篇    下一篇

面向产能优化的地下金属矿山安全保障条件评价研究

王猛(),史秀志(),张舒   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-03-04 修回日期:2020-05-08 出版日期:2020-10-31 发布日期:2020-11-05
  • 通讯作者: 史秀志 E-mail:wangmeng95@csu.edu.cn;baopo@csu.edu.cn
  • 作者简介:王猛(1995-),男,河南驻马店人,硕士研究生,从事矿山安全方面的研究工作。wangmeng95@csu.edu.cn
  • 基金资助:
    国家重点研发计划项目“深部高储能矿岩组合孔超前制裂精准爆破技术”(2017YFC0602902)

Evaluation Research on Safety Guarantee Conditions of Underground Metal Mines Oriented to Optimizing Production Capacity

Meng WANG(),Xiuzhi SHI(),Shu ZHANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-03-04 Revised:2020-05-08 Online:2020-10-31 Published:2020-11-05
  • Contact: Xiuzhi SHI E-mail:wangmeng95@csu.edu.cn;baopo@csu.edu.cn

摘要:

随着我国对矿产资源的大量开采,很多矿山出现了各种各样的产能与安全问题,矿山安全保障条件的优化与产能目标的科学合理制定显得尤为重要。以矿山的产能优化为目标,建立了与产能相关的地下金属矿山安全保障研究与评价模型,并综合利用熵权—层次分析法、事故树和LEC法的计算特点,进行了计算过程的设计与论证。以国内某地下铅锌矿为例,依次进行了现有产能下的安全保障现状的评分计算与评价、当前安全保障条件下不同产能目标的完成能力评价与结果验证以及未来3年矿山最佳产能目标的制定等方面的研究,证明该评价方案能够为矿山产能优化和安全保障能力提升提供有效依据和有力方向。

关键词: 地下金属矿山, 产能, 层次分析法, 熵权法, 安全保障, 指标体系, 安全度

Abstract:

Mineral resources are an important pillar of China’s development.Industries based on mineral resources occupy half of the national economic development.However,with the long-term exploitation of mineral resources in China,many mines have encountered various production and safety issues.Poor resource conditions,aging production equipment,poor management capabilities,and many safety accidents have brought problems to the development of China’s mines and have become a huge hidden danger.In recent years,with the rising demand for healthy and safe mine environment in China’s mines,the relationship between safety guarantee conditions and the production capacity of mines has become closer and closer.The optimization of mine safety guarantee conditions and the scientific and rational formulation of production capacity targets becomes particularly important.Based on the characteristics of the production capacity of underground metal mines,this paper establishes the “human,machine,material,environmental,and pipe” safety guarantee research and evaluation model of underground metal mines related to production capacity through the methods of literature survey,field investigation,and expert interviews.The calculation characteristics of the model calculation process were designed and demonstrated by comprehensively utilizing the calculation characteristics of entropy weight-analytic hierarchy process,accident tree and LEC method.Finally,taking an underground lead-zinc mine in China as an example,the research was conducted from three aspects,including the research on calculation and evaluation of the current safety assurance status score under the existing production capacity,evaluation and result verification of the ability to complete different production targets under current security conditions,and production capacity target formulation in the next 3 years.The evaluation results show that under the existing production conditions,if the mine want to rapidly improve the safety guarantee conditions,it is necessary to prioritize the reduction of the number of underground operators,reduce the violation rate of the operators,reduce the length of underground operations,optimize the conditions of underground mining,and rationally optimize the mining structure,and so on;The mine’s optimal production targets from 2020 to 2022 should be located at about 138 000 t/a,137 000 t/a,and 133 000 t/a,respectively.The comparison between the evaluation results and the facts proves that the evaluation results are consistent with the actual situation of the mine and can provide reference and guidance significance for the actual production of the mine.Therefore,the evaluation method can provide an effective basis and direction for mine capacity optimization,self-evaluation and improvement of safety guarantee capabilities.

Key words: underground metal mine, capacity, analytic hierarchy process, entropy weight method, safety guarantee, index system, degree of safety

中图分类号: 

  • TD73

图1

地下金属矿山安全保障水平评价指标体系"

表1

平均随机一致性指标取值"

nRInRI
1061.24
2071.32
30.5881.41
40.991.45
51.12

表2

指标评分区间表"

指标得分区间指标得分区间指标得分区间指标得分区间
C1(0-17]C11(0-28]B10(0-10]C26(0-20]
C2(0-47]C12(0-25]B11(0-10]C27(0-28]
C3(0-10]C13(0-10]B12(0-10]C28(0-30]
C4(0-10]C14(0-10]B13(0-10]B16(0-10]
B3(0-36]C15(0-10]B14(0-10]B17(0-10]
C5(0-31]C16(0-10]B15(0-10]B18(0-10]
C6(0-69]C17(0-10]C21(0-24]B19(0-10]
C7(0-10]C18(0-10]C22(0-32]B21(0-10]
C8(0-15]C19(0-10]C23(0-26]
C9(0-8]C20(0-10]C24(0-18]
C10(0-14]B9(0-10]C25(0-22]

表3

专家打分结果及权重"

指标得分联合权重指标得分联合权重
B1--0.4003C19.60.48680.2558
B2--0.5997C229.40.51320.7442
B319.8-0.6055C37.10.46970.5434
B4--0.3945C49.10.53030.4566
B5--0.1929C521.50.50000.3119
B6--0.312C648.90.50000.6881
B7--0.2139C7100.15780.2945
B8--0.2813C8150.17020.154
B9100.13850.1588C97.10.16480.2402
B109.20.14870.1231C10140.17130.1395
B11100.13940.1462C11260.16840.0755
B12100.14530.1706C12250.16750.0963
B131.20.15120.1054C1390.24710.2355
B1460.13930.1481C148.20.24860.3569
B1550.13760.1476C15100.25090.2214
B1610-0.2561C16100.25340.1862
B178.8-0.1828C17100.52720.3581
B189-0.1155C187.90.47280.6419
B198.8-0.142C199.70.52720.5205
B20--0.0691C208.40.47280.4795
B217-0.168C2122.3-0.2408
B22--0.0664C2228.3-0.321
C2317.2-0.2574
C2411.4-0.1809
C2522-0.2216
C2619.2-0.1967
C2726.2-0.2791
C2830-0.3026

图2

指标重要程度排序"

图3

不同产能方案下的评价目标得分走势图"

图4

2020~2022年不同产能方案下的评价目标得分走势图"

1 关凤峻.二元结构的中国矿业经济[J].中国矿业,2001,10(4):20-22.
Guan Fengjun.China’s mining economy with a dual structure[J].China Mining Magazine,2001,10(4):20-22.
2 宋明春. 对我国深部金矿资源勘查有关问题的认识与思考[J]. 黄金科学技术, 2017,25 (3): 1-2.
Song Mingchun. The relevant issues of deep gold deposit exploration in China[J].Gold Science and Technology,2017,25(3):1-2.
3 李冬青,王李管.深井硬岩大规模开采理论与技术:冬瓜山铜矿床开采研究与实践[M].北京:冶金工业出版社,2009.
Li Dongqing,Wang Liguan.Theory and Technology of Large-scale Mining of Deep Well Hard Rock:Research and Practice on Mining of Dongguashan Copper Deposit[M].Beijing:Metallurgical Industry Press,2009.
4 孙成林,连钦明.论矿山生产与可持续发展[J].有色矿冶,2006,22(增1):161-162,148.
Sun Chenglin,Lian Qinming.On mine production and sustainable development[J].Nonferrous Mining and Metallurgy,2006,22(Supp.1):161-162,148.
5 Benardos A G,Kaliampakos D C,Prousiotis J G,et al.Underground aggregate mining in Athens:A promising investment plan[J].Tunnelling and Underground Space Te-chnology,2001,16(4):323-329.
6 Suverkrop D.NPV and IRR:Why not both?[J].Mining Engineering,2001,53(5):11.
7 Cavender B.Determination of the optimum lifetime of a mining project using discounted cash flow and option pricing techniques[J].Mining Engineering,1992,44(10):1262-1268.
8 郑海力,陈建宏,杨瑞波,等.灰色预测线性规划在多金属矿产能优化配置中的应用[J].北京科技大学学报,2010,32(12):1613-1617.
Zheng Haili,Chen Jianhong,Yang Ruibo,et al.Application of grey prediction linear programming in optimal allocation of polymetallic ore capacity[J].Journal of University of Science and Technology Beijing,2010,32(12):1613-1617.
9 罗周全,管佳林,王益伟,等.地下金属矿山生产规模优化确定方法[J].中南大学学报(自然科学版),2013,44(7):2875-2880.
Luo Zhouquan,Guan Jialin,Wang Yiwei,et al.Method for optimizing the production scale of underground metal mines[J].Journal of Central South University (Natural Science),2013,44(7):2875-2880.
10 高文翔.多矿整合产能配置与区域开拓运输系统重构优化研究[D].长沙:中南大学,2008.
Gao Wenxiang.Multi-mine Integrated Production Capacity Allocation and Regional Development and Transpor-tation System Reconstruction Optimization Study[D].Changsha:Central South University,2008.
11 张永玺,魏镜弢,杨琛.基于自适应遗传算法的矿山设备系统优化[J].安徽理工大学学报(自然科学版),2010,30(2):29-32.
Zhang Yongxi,Wei Jingtao,Yang Chen.Optimization of mining equipment system based on adaptive genetic algorithm[J].Journal of Anhui University of Science and Te-chnology(Natural Science Edition),2010,30(2):29-32.
12 陈顺满,许梦国,王平,等.基于未确知测度理论的地下金属矿山合理产能优选[J].武汉科技大学学报,2013,36(6):461-464.
Chen Shunman,Xu Mengguo,Wang Ping,et al.Optimization of reasonable production capacity of underground metal mine based on unascertained measurement theory[J].Journal of Wuhan University of Science and Technology,2013,36(6):461-464.
13 范凤岩,柳群义.基于改进的熵权层次分析法的中国锡资源供应安全评价研究[J].中国矿业,2019,28(10):77-84.
Fan Fengyan,Liu Qunyi.A study on security evaluation of tin resources supply in China based on improved analytic hierarchy process[J].China Mining Magazine,2019,28(10):77-84.
14 赵德深,徐孟林,夏洪春.基于熵权—层次分析法的导水裂缝带高度预测的研究[J].煤矿开采,2013,18(1):8-11.
Zhao Deshen,Xu Menglin,Xia Hongchun.Study on the height prediction of water flowing fracture zone based on entropy weight-analytic hierarchy process[J].Coal Mining,2013,18(1):8-11.
15 罗周全,徐海,谭浪浪,等.矿山产能灰色局势决策优化[J].中南大学学报(自然科学版),2013,44(1):289-293.
Luo Zhouquan,Xu Hai,Tan Langlang,et al.Decision-making optimization of gray situation of mine production capacity[J].Journal of Central South University (Science and Technology),2013,44 (1):289-293.
16 Saaty T L.How to make a decision:The analytic hierarchy process[J].European Journal of Operational Research,1990,48(1):9-26.
17 卜全民,王涌涛,汪德爟.事故树分析法的应用研究[J].西南石油大学学报,2007,29(4):167-170.
Bu Quanmin,Wang Yongtao,Wang Dexuan.Application of fault tree analysis[J].Journal of Southwest Petroleum University,2007,29(4):167-170.
18 倪红兵.如何正确理解和运用LEC风险评价法[J].世界标准化与质量管理,2008,4(4):45-46.
Ni Hongbing.How to correctly understand and apply the LEC risk assessment method[J].World Standardization and Quality Management,2008,4(4):45-46.
19 曲海燕.运用归一法调控某中医院病床工作效率[J].中国医院统计,2010,17(1):67-68.
Qu Haiyan.Using the normalization method to regulate the work efficiency of a hospital bed[J].China Hospital Statistics,2010,17(1):67-68.
20 解世俊.金属矿床地下开采[M].北京:冶金工业出版社,1986.
Shijun Jie.Underground Mining of Metal Deposits[M].Beijing:Metallurgical Industry Press,1986.
[1] 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108.
[2] 凡奥奇, 王万禄, 李树建, 张斌, 刘映辉, 吴浩. 基于优化组合赋权的可拓学磷矿山岩体质量评价[J]. 黄金科学技术, 2024, 32(1): 132-143.
[3] 杨玮, 薛梦鸽, 龙涛, 邓莎, 邓博, 方楠. 基于DPSIR模型的黄金行业绿色矿山建设综合评价研究[J]. 黄金科学技术, 2023, 31(4): 635-645.
[4] 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679.
[5] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[6] 邓龙鑫, 陈建宏. 基于博弈论的主客观组合权重TOPSIS采矿方法优选[J]. 黄金科学技术, 2022, 30(2): 282-290.
[7] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[8] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[9] 黄锴强,徐水太,薛飞. 基于ISM和ANP的废弃稀土矿山治理效果影响因素分析[J]. 黄金科学技术, 2021, 29(2): 306-314.
[10] 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163.
[11] 王利鹏,闫放,李孜军,王方. 高海拔地区矿井风机状态动态评估[J]. 黄金科学技术, 2020, 28(6): 930-939.
[12] 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379.
[13] 高振兴, 郭进平. 基于熵值法—突变理论的尾矿库安全评价研究[J]. 黄金科学技术, 2020, 28(3): 450-456.
[14] 宋品芳, 李孜军, 李蓉蓉, 赵淑琪, 徐宇. 基于熵权模糊法的高海拔矿井风机性能影响因素分析[J]. 黄金科学技术, 2020, 28(3): 457-464.
[15] 刘亦晴,梁雁茹,刘娜娜,胡欢. 基于高质量发展视角的绿色矿山建设评价指标体系研究[J]. 黄金科学技术, 2020, 28(2): 176-187.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!