img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 846-858.doi: 10.11872/j.issn.1005-2518.2020.06.122

• 矿产勘查与资源评价 • 上一篇    下一篇

基于立方定律的断层流—热耦合数值计算方法

陈刚1(),马玲2(),龚红胜1   

  1. 1.昆明理工大学国土资源工程学院,云南 昆明 650031
    2.昆明理工大学城市学院,云南 昆明 650051
  • 收稿日期:2020-07-09 修回日期:2020-08-03 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 马玲 E-mail:chen_kust@qq.com;maling@kust.edu.cn
  • 作者简介:陈刚(1981-),男,河南林州人,博士研究生,讲师,从事岩体裂隙渗流和成矿动力学模型研究工作。chen_kust@qq.com
  • 基金资助:
    国家自然科学基金项目“基于裂隙三维空间分布的矿区地下水流动模拟研究”(41562017)

Numerical Calculation Method of Fault Flow-Thermal Coupling Based on Cubic Law

Gang CHEN1(),Ling MA2(),Hongsheng GONG1   

  1. 1.Faculty of Land Resources Engineering,Kunming University of Science and Technology,Kunming 650031,Yunnan,China
    2.City College,Kunming University of Science and Technology,Kunming 650051,Yunnan,China
  • Received:2020-07-09 Revised:2020-08-03 Online:2020-12-31 Published:2021-01-29
  • Contact: Ling MA E-mail:chen_kust@qq.com;maling@kust.edu.cn

摘要:

由于断层宽度远小于其延伸方向的尺寸,造成数值模型建模困难、计算效率低等问题。把断层概化为无几何厚度的空间曲面,并引用裂隙渗流理论中的立方定律对其进行渗流计算,可以有效降低建模难度。本研究旨在验证断层概化方法的可行性和合理性,并解决断层中的裂隙流与基岩中的达西流之间的流—热耦合问题。采用公式推导得出断层与基岩之间的流—热耦合控制方程,并使用数值模型的计算结果进行了验证分析。结果表明:当不考虑断层内部结构影响时,利用立方定律计算断层渗流的方法是可行的;耦合控制方程对基岩与断层之间的流—热耦合计算合理有效;随温度而变化的流体粘滞性对数值模型计算结果影响显著。

关键词: 立方定律, 断层, 流—热耦合, 数值计算, 热液型矿床, 裂隙渗流

Abstract:

For the ore-forming process of hydrothermal deposits,the seepage of fluids in the rock matrix and fissures (faults) produces material and energy transmission,and forms orebodies at specific locations with changes in temperature and pressure.Because the width of the fault is much smaller than the dimension of its extension direction,it causes problems such as difficulty in modeling numerical models and low calculation efficiency.According to the geometric characteristics of the fault,it can be generalized into a space surface to reduce the difficulty of modeling.The generalized fault uses the cubic law in rock mass fracture seepage theory to calculate the fault seepage problem.The seepage of hydrothermal fluid is not limited to faults,but also occurs in bedrock,and this process is calculated using Darcy’s law. The fracture flow in the fault and the Darcy flow in the bedrock interact with each other.In order to ensure the continuity of the pressure,velocity,mass,and energy of the seepage field in the numerical model calculation domain,the flow-heat coupling calculation is required.The purpose of this study is to verify the feasibility and rationality of the generalization method of the fault space surface,and to solve the problem of flow-heat coupling between the fissure flow in the fault and the Darcy flow in the bedrock.The viscosity of fluid has the property of changing with temperature.This article will discuss whether the change of viscosity has an effect on the calculation result of the numerical model initially.Based on the theoretical formula of cubic law,the formula is derived according to the characteristics of small fault thickness,and the flow-heat coupling control equation of fracture flow and Darcy flow is obtained. In order to verify the rationality of the control equations,numerical model experiments are used for verification and analysis.After analysis,it is considered that the method of calculating the seepage of the fault using cubic law is feasible when the internal structure of the fault is not taken into consideration,which can reduce the difficulty of modeling the numerical model.Because the fault uses a spatial surface,the reduction of the dimension compared to the overall model also brings increased computing efficiency. After analyzing the results of the numerical experiments,it is considered that the coupling control equation is reasonable and effective for the calculation of the flow-heat coupling between the bedrock and the fault,which is in accordance with the laws of seepage and heat conduction.Based on the original experimental numerical model,a model in which the viscosity coefficient of the fluid does not change with temperature is established,and the change curves of mass and heat conduction flux are compared.It is found whether the change of the fluid viscosity is considered to have a significant effect on the calculation result of the numerical model.

Key words: cubic law, fault, flow-thermal coupling, numerical calculation, hydrothermal deposit, fissure seepage

中图分类号: 

  • P611

图1

裂隙流—达西流耦合概念模型"

图2

水的粘滞性系数变化曲线[30]"

图3

裂隙内部温度变化曲线"

图4

地质模型结构及测点空间位置(a)模型结构 (b)模型中测点分布位置"

表1

地层参数列表"

地层渗透率/m2孔隙率导热系数/(W·m-1·K-1密度/(kg·m-3恒压热容/(J·kg-1·K-1隙宽/m裂隙粗糙度
第一层1.00E-140.122 300900
第二层1.00E-100.332 500850
第三层1.00E-110.33.52 700850
断层1101 0004 2000.0021.6

图5

模型施加的温度—压力曲线"

图6

数值模型断层面通量曲线"

图7

第二层基岩中多点温度、压力曲线"

图8

不同时间模型内温度分布切片图(温度单位:℃)"

图9

断层通量、热传导通量的比值曲线"

1 Liu L M,Zhao Y L,Zhao C B. Coupled geodynamics in the formation of Cu skarn deposits in the Tongling-Anqing district,China:Computational modeling and implications for exploration[J].Journal of Geochemical Exploration,2010,106(1/2/3):146-155.
2 赵义来,刘明亮.复杂形态岩体接触带成矿耦合动力学三维数值模拟:以安庆铜矿为例[J].大地构造与成矿学,2011,35(1):128-136.
Zhao Yilai,Liu Mingliang.3D-numerical modeling of coupled geodynamic processes and mineralization at the contact zones of complex plutons:Example form the Anqing deposit,Anhui Province,China[J]. Geotectonica et Metallogenia,2011,35(1):128-136.
3 朱静,陈建平.基于FLAC3D的成矿过程模拟研究现状[J].地质学刊,2019,43(3):506-512.
Zhu Jing,Chen Jiangping. Research status of FLAC3D-based mineralization process simulation[J].Journal of Geology,2019,43(3):506-512.
4 刘向冲.构造—流体耦合有限元模拟:以石英脉型钨矿为例[J].地质力学学报,2019,25(5):163-169.
Liu Xiangchong. Finite-element simulations of structure-fluid coupling:A case study in vein-type tungsten deposits[J].Journal of Geomechanics,2019,25(5):163-169.
5 戴文强,李晓晖,袁峰,等.安庆铜矿床典型矽卡岩矿物形成过程数值模拟[J].合肥工业大学学报(自然科学版),2019,42(3):346-354.
Dai Wenqiang,Li Xiaohui,Yuan Feng,et al. Numerical simulation of formation process of typical skarn minerals in Anqing copper deposit[J].Journal of Hefei University of Technology(Natural Science),2019,42(3):346-354.
6 赵崇斌,Hobbsbe B E,Ord A.用计算地球科学研究方法探讨地质现象的动力学机制——以断层中等距成矿分布为例[J].中国科学(D辑:地球科学),2008,38(5):646-652.
Zhao Chongbin,Hobbs B E,Ord A. Investigating dynamic mechanisms of geological phenomena using methodology of computational geosciences:An example of equal-distant mineralization in a fault[J].Science in China (Series D:Earth Sciences),2008,51(7):947-954.
7 池国翔,薛春纪.成矿流体动力学的原理、研究方法及应用[J].地学前缘,2011,18(9):1-18.
Chi Guoxiang,Xue Chunji. Principles,methods and applications of hydrodynamic studies of mineralization[J].Earth Science Frontiers,2011,18(9):1-18.
8 Guilert J M,Park C F.The Geology of Ore Deposites[M].New York:Freeman and Company,1986:985.
9 李瑞红,安平,恽孟河,等.焦家断裂带三维结构模型及其数值模拟:以新城金矿床控矿构造为例[J].大地构造与成矿学,2019,43(2):33-45.
Li Ruihong,An Ping,Yun Menghe,et al.3D ore-controlling structural model and numerical simulation of Jiaojia fault zone:A case study of the Xincheng gold deposit[J]. Geotectonica et Metallogenian,2019,43(2):33-45.
10 杨永春,刘家军,王学银,等.甘肃滴水山金矿不同构造—岩相带岩石地球化学特征及构造控矿机理探讨[J].西北地质,2018,51(1):88-103.
Yang Yongchun,Liu Jiajun,Wang Xueyin,et al. Geochemical characteristics and structural ore-control mechanism about different structural-lithofacies zones of the Dishuishan gold deposit in Gansu Province[J].Northwestern Geology,2018,51(1):88-103.
11 赵少攀,徐书奎,徐宗蛟,等.河南洛宁县龙门店银矿区断裂构造分期及含矿性评价[J].西北地质,2019,52(1):228-238.
Zhao Shaopan,Xu Shukui,Xu Zongjiao,et al.Stage division and ore-bearing evaluation of fault tectonic in the Longmendian silver deposit,Luoning,Henan Province[J].Northwestern Geology,2019,52(1):228-238.
12 刘春学,倪春中,吕磊,等.地学中方向性变量的多尺度空间分布模拟[M]. 北京:科学出版社,2017.
Liu Chunxue,Ni Chunzhong,Lü Lei,et al.Multi-Scale Spatial Distribution Simulation of Directional Variables in Geosciences[M].Beijing:Science Press,2017.
13 Juanes R,Samper J,Molinero J.A general and efficient formulation of fractures and boundary conditions in the finite element method[J].International Journal for Numerical Methods in Engineering,2002,54(12):1751-1774.
14 张有天.岩石水力学与工程[M]. 北京:中国水利水电出版社,2004.
Zhang Youtian.Rock Hydraulics and Engineering[M].Beijing:China Water Conservancy and Hydropower Press,2004.
15 陈必光,宋二祥,程晓辉.二维裂隙岩体渗流传热的离散裂隙网络模型数值计算方法[J].岩石力学与工程学报,2014,33(1):43-51.
Chen Biguang,Song Erxiang,Cheng Xiaohui. A numerical method for discreate fracture network model for flow and heat transfer in tow-dimensinal fractured rocks[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(1):43-51.
16 Lauwerier H A.The transport of heat in an oil layer caused by the injection of hot fluid[J].Applied Scientific Research,1955,5(2):145-150.
17 Pruess K,Bodvasson G S. Thermal effects of reinjection in geothermal reservoirs with major vertical fractures[J].Journal of Petroleum Technology,1984,36(9):1567-1578.
18 Cheng A H D,Ghassemi A,Detournay E. Integral equation solution of heat extraction from a fracture in hot dry rock[J].International Journal for Numerical and Analytical Methods in Geomechanics,2001,25(13):1327-1338.
19 赵坚.岩石裂隙中的水流—岩石热传导[J].岩石力学与工程学报,1999,18(2):119-123.
Zhao Jian. Experiental study of flow-rock heat transfer in rock fractures[J].Chinese Journal of Rock Mechanics and Engineering,1999,18(2):119-123.
20 赵阳升,王瑞凤,胡耀青,等.高温岩体地热开发的块裂介质固流热耦合三维数值模拟[J].岩石力学与工程学报,2002,21(12):1751-1755.
Zhao Yangsheng,Wang Ruifeng,Hu Yaoqing.3D numerical simulation for coupled THM of rock matrix-fractured media in heat extraction in HDR[J].Chinese Journal of Rock Mechanics and Engineering,2002,21(12):1751-1755.
21 张树光,李志建,徐义洪,等.裂隙岩体流—热耦合传热的三维数值模拟分析[J].岩土力学,2011,32(8):2507-2511.
Zhang Shuguang,Li Zhijian,Xu Yihong,et al.Three-dimensional numerical simulation and analysis of fluid-heat coupling heat-transfer in fractured rock mass[J].Rock and Soil Mechanics,2011,32(8):2507-2511.
22 唐志伟,米倡华,张学峰,等.增强型地热系统固流耦合数值模拟与分析[J].北京工业大学学报,2016,42(10):1560-1564.
Tang Zhiwei,Mi Changhua,Zhang Xuefeng,et al.Numerical simulation and analysis of the coupled for heat-fluid-solid in enhanced geothermal systems[J].Journal of Beijing University of Technology,2016,42(10):1560-1564.
23 曲占庆,张伟,郭天魁,等.基于 COMSOL 的储层参数与层理缝对地热产能影响规律研究[J].地球物理学进展,2017,32(6):2374-2382.
Qu Zhanqing,Zhang Wei,Guo Tiankui,et al.Research on the effect of geothermal reservoir and bedding fractures on geothermal deliverability based on COMSOL[J].Progress in Geophysics,2017,32(6):2374-2382.
24 张伟,孙江,曲占庆,等.高温地热开采热流固耦合模型及综合评价方法[J].地球物理学进展,2019,34(2):668-675.
Zhang Wei,Sun Jiang,Qu Zhanqing,et al.Thermo-hydro-mechanical coupling model and comprehensive evaluation method of high temperature geothermal extraction[J].Progress in Geophysics,2019,34(2) :668-675.
25 David T S.Anisotropic permeability of fractured media[J].Water Resources Research,1969,5(12):1273-1289.
26 Louis C. A study of groundwater flow in jointed rock and its influence on the stability of rock mass[R]. London: Imperial College of Science and Technology , 1969.
27 仵彦卿.岩土水力学[M]. 北京:科学出版社,2009.
Wu Yanqing.Geotechnical Hydraulics[M].Beijing:Science Press,2009.
28 速宝玉,张文捷,盛金昌,等.渗流—化学溶解耦合作用下岩石单裂隙渗透特性研究[J] .岩土力学,2010,31(11):3361-3366.
Su Baoyu,Zhang Wenjie,Sheng Jinchang,et al. Study of permeability in single fracture under effects of coupled fluid flow and chemical dissolution[J].Rock and Soil Mechanics,2010,31(11):3361-3366.
29 王媛,速宝玉.单裂隙面渗流特性及等效水力隙宽[J].水科学进展,2002,13(1):61-68.
Wang Yuan,Su Baoyu. Research on the behavior of fluid flow in a single fracture ant its equivalent hydraulic aperture[J].Advances in Water Science,2002,13(1):61-68.
30 Incropera P F,Dewitt P D,Bergman L T,et al. Fundamentals of Heat and Mass Transfer [M].7th eds. New York:John Wiley & Sons,2011.
31 刘明亮,周瑞超,赵崇斌.构造应力环境对浅成岩体成矿系统的制约:从安庆月山岩体冷却过程动力学计算模拟结果分析[J].岩石学报,2010,26(9):2869-2878.
Liu Mingliang,Zhou Ruichao,Zhao Chongbin. Constraints of tectonic stress regime on mineralization system related to the hypabyssal intrusion:Implication from the computational modeling experiments on the geodynamics during cooling process of the Yuenshan intrusion in Anqing district,China[J]. Acta Petrologica Sinica,2010,26(9):2869-2878.
[1] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[2] 胡建华,庞乐,王学梁,郑明华. 基于正交试验的过断层软破段巷道支护参数优化[J]. 黄金科学技术, 2020, 28(6): 859-867.
[3] 孙琪皓,马凤山,赵海军,郭捷,曹家源. 倾斜矿体采动与断层活化作用引起竖井变形的物理模型试验[J]. 黄金科学技术, 2020, 28(1): 51-60.
[4] 杜胜江, 温汉捷, 秦朝建, 卢树藩, 燕永锋, 杨光树. 滇东南老君山矿集区三保锰银矿床碳氧同位素特征及其意义[J]. 黄金科学技术, 2018, 26(3): 261-269.
[5] 张鹏鹏, 李俊建, 党智财, 唐文龙, 付超, 田杰鹏. 蒙古国道尔脑德铀矿床地质特征及找矿方向[J]. 黄金科学技术, 2018, 26(1): 9-16.
[6] 王志新,焦秀美,丁正江,刘晓敏,李国华,纪旭波,唐俊智. 胶莱盆地东北缘辽上式金矿构造控矿特征及找矿方向[J]. 黄金科学技术, 2017, 25(3): 61-69.
[7] 梅秀杰,张参辉,杨显道,郭玉溪. 豫西次级拆离断层对金矿成矿的控制作用——以河南槐树坪金矿为例[J]. 黄金科学技术, 2014, 22(2): 7-12.
[8] 王增涛,孙延光,崔开仓. 甘肃寨上金矿床南矿带断层泥的形成与成矿作用浅析[J]. 黄金科学技术, 2013, 21(1): 16-19.
[9] 董传统. 黑龙江九佛沟多金属矿地质特征及成因分析[J]. J4, 2012, 20(1): 42-45.
[10] 陈果. 旧店金矿区韧性断层及其成矿作用探讨[J]. J4, 2009, 17(1): 10-13.
[11] 刘喜友, 刘洪军, 代文玉. 黑龙江省老柞山金矿床东矿带东部水文地质特征[J]. J4, 2007, 15(2): 9-14.
[12] 杨金中, 赵玉灵, 沈元超, 李厚民. 胶莱盆地东北缘与低角度拆离断层有关的金矿陈矿作用——以山东海阳郭城金矿为例[J]. J4, 2000, 8(4): 13-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!