img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 868-876.doi: 10.11872/j.issn.1005-2518.2020.06.055

• 采选技术与矿山管理 • 上一篇    下一篇

不同损伤程度砂岩相似材料动态力学性能试验研究

王倩倩1,2(),徐颖1,2(),汪海波1,郑强强1,2,倪贤1,2,胡浩2   

  1. 1.安徽理工大学土木建筑学院,安徽 淮南 232001
    2.安徽理工大学省部共建深部煤矿采动响应与灾害防控国家重点实验室,安徽 淮南 232001
  • 收稿日期:2020-03-08 修回日期:2020-06-10 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 徐颖 E-mail:1937221930@qq.com;yxu@aust.edu.cn
  • 作者简介:王倩倩(1995-),女,安徽六安人,硕士研究生,从事地下工程方面的研究工作。1937221930@qq.com
  • 基金资助:
    安徽省高校自然科学研究重大项目“高应力场岩体爆破破岩机理研究”(KJ2017ZD11);安徽省科技攻关计划项目“矿山爆破安全与灾害控制技术”(1501041123)

Experimental Study on Dynamic Mechanical Properties of Similar Sandstone Materials with Different Damage Degree

Qianqian WANG1,2(),Ying XU1,2(),Haibo WANG1,Qiangqiang ZHENG1,2,Xian NI1,2,Hao HU2   

  1. 1.School of Civil Architecture,Anhui University of Technology,Huainan 232001,Anhui,China
    2.State Key Laboratory of Mining Response and Disaster Prevention and Control in Deep Coal Mines,Anhui University of Technology,Huainan 232001,Anhui,China
  • Received:2020-03-08 Revised:2020-06-10 Online:2020-12-31 Published:2021-01-29
  • Contact: Ying XU E-mail:1937221930@qq.com;yxu@aust.edu.cn

摘要:

地下深部复杂环境导致砂岩内部出现无裂损伤区,然而关于矿山深部爆破应力波作用下岩体的破裂与损伤尚未有成熟、系统的理论体系。以水泥砂浆作为砂岩相似材料进行变循环阈值试验得到无裂纹损伤试块,采用分离式霍普金森压杆(SHPB)装置对砂岩相似材料进行动态冲击压缩试验,通过调整冲击气压实现不同应变率条件下的砂岩相似材料冲击压缩,得到不同试验条件下试件的应力、应变和应变率变化关系。试验结果表明:无损和不同程度损伤砂岩的动态应力—应变曲线的形态相似,曲线峰值点随阈值增长出现右下移的现象,且动态压缩强度随损伤程度的加剧而削减,动态冲击损伤在循环阈值达到60%时到达损伤门槛值,与静态分析结果相呼应;峰值应力和峰值应变均存在应变率效应,且动态冲击荷载对试块的耦合效应在低应变率下更为显著,超过破碎应变率就不再发挥作用。

关键词: 损伤岩体, 循环荷载, SHPB压缩试验, 动态应力—应变曲线, 应变率, 应力敏感因子

Abstract:

At present,many researches have been carried out on the static and scientific characteristics of hard rock in deep underground and the dynamic response of intact rock under dynamic impact load.However,the damage and fracture mechanism of the fracture free zone in sandstone under the action of blasting stress wave has not been thoroughly studied.In order to solve the problem of difficult coring of the original rock in the deep part of the coal mine,this paper conducts six cyclic threshold tests on the similar material of sandstone,namely cement mortar,and sets the upper limit of cyclic stress as 20%,40%,60% and 80% of the static strength.One dimensional dynamic impact compression tests were carried out with the impact pressure of 0.4,0.5 and 0.6 MPa respectively.Finally,the relationship of stress,strain and strain rate under dynamic conditions was obtained.Based on the analysis of the dynamic and static strength changes of similar sandstone blocks before and after damage, the dynamic strength is lower than the static strength at the same damage degree.The strain rate does not affect the shape of the curve,but the rise of the cycle threshold causes the peak point of the curve to move to the lower right corner.The relative value of the stress sensitive factor decreased at a different rate before the cycle threshold of 60% and after the cycle threshold of 60%.The test results show that the strength decrease caused by damage under dynamic conditions to be higher than static conditions,which is because of cyclic loading and unloading causes the internal elasticity of the test block to decrease and the shape to increase.After the cycle threshold reaches 60%,the dynamic impact damage reaches the threshold value,which is consistent with the static analysis results.Both peak stress and peak strain have strain rate effect,but the coupling effect of impact load is more significant at low strain rate,and it will no longer work beyond the breaking strain rate.

Key words: damaged rock mass, cyclic loading, SHPB compression test, dynamic stress-strain curve, strain rate, stress sensitive factor

中图分类号: 

  • TU821

图1

SHPB压缩装置示意图"

表1

水泥砂浆静态抗压强度"

试块编号静态强度/MPa平均静态强度/MPa
20%-159.1357.62
20%-252.98
20%-360.75
40%-157.6556.03
40%-254.12
40%-356.34
60%-141.6644.68
60%-245.22
60%-347.18
80%-134.1226.03
80%-221.95
80%-322.01

图2

循环阈值与试块静态强度下降量变化曲线"

表2

SHPB试验结果"

气压/MPa循环加荷峰值/σνˉ/(m·s-1)σcd/MPaε˙/(1·s-1)
0.404.362.4935.32
0.256.4342.36
0.450.0148.15
0.649.5954.64
0.841.7863.52
0.505.764.8134.32
0.258.6045.45
0.452.3849.22
0.650.6455.81
0.841.7367.62
0.606.269.1932.14
0.259.6543.84
0.453.8745.05
0.649.8655.32
0.840.0768.22

图3

不同加载速率下的变阈值动态应力—应变曲线图注:无损表示试块未进行单轴循环加卸载试验处理;20%、40%、60%及80%为进行循环加卸载试验处理的循环阈值"

图4

基于应变率的动态应力及峰值应变拟合曲线"

图5

应力、应变和应变率的时程曲线"

1 钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定[C]//钱七虎院士论文选集.北京:中国岩石力学与工程学会,2007:558-564.
Qian Qihu.The characetrisitc scientiifc phenomena of engineering response to deep rock mass and the implicaton of deepness[C]//Selected Papers of Academician Qian Qihu.Beijing:Chinese Society for Rock Mechanics & Engineering,2007:558-564.
2 谢和平,高峰,鞠杨,等.深部开采的定量界定与分析[J].煤炭学报,2015,40(1):1-10.
Xie Heping,Gao Feng,Ju Yang,et al.Quantitative definition and investigation of deep mining[J].Journal of China Coal Society,2015,40 (1):1-10.
3 韩可琦,胡吉锋,刘华东,等.煤矿采掘计划计算机仿真系统实现[J].黄金科学技术,1999,7(4/5):55-58.
Han Keqi,Hu Jifeng,Liu Huadong,et al.Realization of computer simulation system for coal mining plan[J].Gold Science and Technology,1999,7(4/5):55-58.
4 周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展[J].力学进展,2005,35(1): 91-99.
Zhou Hongwei,Xie Heping,Zuo Jianping.Developments in researches on mechanical behaviors of rocks under the condition of high ground pressure in the depths[J].Advances in Mechanics,2005,35(1):91-99.
5 胡社荣,彭纪超,黄灿,等.千米以上深矿井开采研究现状与进展[J].中国矿业,2011,20(7):105-113.
Hu Sherong,Peng Jichao,Huang Can,et al.An overview of current status and progress in coal mining of the deep over a kilometer[J].China Mining Magazine,2011,20(7):105-113.
6 Wu S C,Chen L,Cheng Z Q.Macro and meso research on the zonal disintegration phenomenon and the mechanism of deep brittle rock mass[J].Engineering Fracture Mechanics,2019,211:254-268.
7 宫伟力,汪虎,何满潮,等.深部开采中岩爆岩块弹射速度的理论与实验[J].煤炭学报,2015,40(10):2269-2278.
Gong Weili,Wang Hu,He Manchao,et al.Theoretical and experimental study on rock block ejection velocity for rock burst found in deep mining[J].Journal of China Coal Society,2015,40(10):2269-2278.
8 邱道宏,李术才,张乐文,等.基于隧洞超前地质探测和地应力场反演的岩爆预测研究[J].岩土力学,2015,36(7):2034-2040.
Qiu Daohong,Li Shucai,Zhang Lewen,et al.Rockburst prediction based on tunnel geological exploration and ground stress field inverse analysis[J].Rock and Soil Mechanics,2015,36 (7):2034-2040.
9 汪海波,魏国力,宗琦,等.节理发育岩体巷道掘进爆破数值模拟与应用研究[J].黄金科学技术,2018,26(3):342-348.
Wang Haibo,Wei Guoli,Zong Qi,et al.Numerical simulation and application research on joint development rock roadway blasting excavation[J].Gold Science and Technology,2018,26(3):342-348.
10 马时强.酉水隧道围岩大变形及支护结构数值模拟研究[J].地下空间与工程学报,2009,5(3):494-498.
Ma Shiqiang.Numerical simulation on the surrounding rock large deformation and support structure of Youshui tunnel [J].Chinese Journal of Underground Space and Engineering,2009,5(3):494-498.
11 崔光耀,祁家所,王明胜.片理化玄武岩隧道围岩大变形控制现场试验研究[J].岩土力学,2018,39(增2):231-237,262.
Cui Guangyao,Qi Jiasuo,Wang Mingsheng.Field test and study on large deformation control of surrounding rock of cleaved basalt tunnel[J].Rock and Soil Mechanics,2018,39 (Supp.2):231-237,262.
12 王春,王成,熊祖强,等.动力扰动下深部出矿巷道围岩的变形特征[J].黄金科学技术,2019,27(2):232-240.
Wang Chun,Wang Cheng,Xiong Zuqiang,et al.Deformation characteristics of the surrounding rock in deep mining roadway under dynamic disturbance[J].Gold Science and Technology,2019,27 (2):232-240.
13 Makarov V V, Guzev M A, Odintsev V N,et al.Periodical zonal character of damage near the openings in highly-stressed rock mass conditions[J].Journal of Rock Mecha-nics and Geotechnical Engineering,2016,8(2):164-169.
14 谢和平,彭苏萍,何满潮.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
Xie Heping,Peng Suping,He Manchao.Basic Theory and Engineering Practice of Deep Mining[M].Beijing:Science Press,2006.
15 谢和平,周宏伟,薛东杰,等.煤炭深部开采与极限开采深度的研究与思考[J].煤炭学报,2012,37(4):535-542.
Xie Heping,Zhou Hongwei,Xue Dongjie,et al.Research and consideration on deep coal mining and critical mining depth[J].Journal of China Coal Society,2012,37(4):535-542.
16 Zhang X T,Xue J H,Duan C R.Research on formation process of zonal disintegration in deep rock mass based on field monitoring and geomechanical model test[J].Geotechnical and Geological Engineering,2018,36(4):2725-2733.
17 刘华博. 预制裂纹类岩石材料裂纹扩展规律及3D打印技术应用[D].北京:中国矿业大学,2009.
Liu Huabo.Crack Propagation Law of Prefabricated Cra-cked Rock Materials and Application of 3D Printing Technology[D].Beijing:China University of Mining and Technology,2009.
18 张慧梅,王焕,张嘉凡,等.CT尺度下冻融岩石细观损伤特性分析[J].辽宁工程技术大学学报(自然科学版),2020,39(1):51-56.
Zhang Huimei,Wang Huan,Zhang Jiafan,et al.Analysis of meso-damage characteristics of freeze-thaw rock on CT scale[J].Journal of Liaoning Technical University(Natural Science),2020,39 (1):51-56.
19 李江腾,肖峰,马钰沛.单轴循环加卸载作用下红砂岩变形损伤及能量演化[J].湖南大学学报(自然科学版),2020,47(1):139-146.
Li Jiangteng,Xiao Feng,Ma Yupei.Deformation damage and energy evolution of red sandstone under uniaxial cyclic loading and unloading[J].Journal of Hunan University(Natural Sciences),2020,47(1):139-146.
20 刘之喜,王伟,罗吉安,等.岩石单轴压缩试验中能量演化分析方法的研究[J].煤炭学报,2020,45(9):3131-3139.
Liu Zhixi,Wang Wei,Luo Ji’an,et al.Method of energy evolution of rock under uniaxial compression test[J].Journal of China Coal Society,2020,45(9):3131-3139.
21 陈俊宇,裴向军,杜瑞锋,等.冲击载荷作用下砂岩的动力学特性及能耗规律[J].科学技术与工程,2019,19(31):304-310.
Chen Junyu,Pei Xiangjun,Du Ruifeng,et al.Dynamic characteristics and energy consumption of sandstone under impact loading[J].Science Technology and Engineering,2019,19 (31):304-310.
22 唐志强,李皋,石祥超,等.岩石单轴冲击加载破碎特征分析[J].应用力学学报,2019,36(5):1076-1081,1258.
Tang Zhiqiang,Li Gao,Shi Xiangchao,et al.Analysis of rock fragmentation characteristics under uniaxial impact loading[J].Chinese Journal of Applied Mechanics,2019,36 (5):1076-1081,1258.
23 刘汉龙,金林森,姜德义,等.煤与砂岩复合岩声发射统计效应的试验与最大似然理论[J].煤炭学报,2019,44(5):1544-1551.
Liu Hanlong,Jin Linsen,Jiang Deyi,et al.Experimental and maximum likelihood theory on acoustic emission statistic effect of coal-sandstone composite rock[J].Journal of China Coal Society,2019,44 (5):1544-1551.
24 张淑同,戴林超,王波,等.模拟煤与瓦斯突出的相似材料配比试验研究[J].煤炭科学技术,2015,43(6):76-80,145.
Zhang Shutong,Dai Linchao,Wang Bo,et al.Experiment study on mixture ratio of similar material for simulation of coal and gas outburst[J].Coal Science and Technology,2015,43(6):76-80,145.
25 孙文斌,张士川,李杨杨,等.固流耦合相似模拟材料研制及深部突水模拟试验[J].岩石力学与工程学报,2015,34(增1):2665-2670.
Sun Wenbin,Zhang Shichuan,Li Yangyang,et al.Development application of solid-fluid coupling similar material for floor strata and simulation test of water-inrush in deep mining[J].Chinese Journal of Rock Mechanics and Engineering,2015,34 (Supp.1):2665-2670.
26 Hu J H,Yang D J.Meso-damage evolution and mechanical characteristics of low-porosity sedimentary rocks under uniaxial compression[J].Transactions of Nonferrous Metals Society of China,2020,30 (4):1071-1077.
27 李刚,陈正汉,谢云,等.高应变率条件下三峡工程花岗岩动力特性的试验研究[J].岩土力学,2007,28(9):1833-1840.
Li Gang,Chen Zhenghan,Xie Yun,et al.Test research on dynamic characteristics of Three Gorges granite under high strain rate[J].Rock and Soil Mechanics,2007,28(9):1833-1840.
28 朱凌,裴向军,崔圣华,等.含脉状缺陷结构岩石循环加卸载损伤及强度特性试验研究[J].岩石力学与工程学报,2019,38(5):900-911.
Zhu Ling,Pei Xiangjun,Cui Shenghua,et al.Experimental study on cycle loading unloading damage and strength characteristics of rocks with vein defects [J].Chinese Journal of Rock Mechanics and Engineering,2019,38(5):900-911.
29 张华.冲击荷载作用下岩石动态损伤特性研究[D].昆明:昆明理工大学,2009.
Zhang Hua.Study on Dynamic Damage Characteristics of Rock Under Impact Load[D].Kunming:Kunming University of Technology,2009.
30 高保彬.采动煤岩裂隙演化及其透气性能试验研究[D].北京:北京交通大学,2010.
Gao Baobin.Experimental Study on Evolution of Cracks and Permeability of Mining Coal[D].Beijing:Beijing Jiaotong University,2010.
[1] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[2] 戴兵, 单启伟, 罗鑫尧, 薛永明. 含孔洞岩石在静应力下的循环冲击试验研究[J]. 黄金科学技术, 2020, 28(4): 531-540.
[3] 王进, 宫凤强. 红砂岩单轴压缩试验的率效应研究[J]. 黄金科学技术, 2018, 26(1): 56-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!