img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 894-901.doi: 10.11872/j.issn.1005-2518.2020.06.049

• 采选技术与矿山管理 • 上一篇    下一篇

基于 Stacking 模型的采空区稳定性预测

王牧帆1(),罗周全1,于琦2()   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.湖南理工职业技术学院,湖南 湘潭 411100
  • 收稿日期:2020-02-29 修回日期:2020-06-11 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 于琦 E-mail:495749247@qq.com;2646590217@qq.com
  • 作者简介:王牧帆(1995-),男,湖南岳阳人,硕士研究生,从事矿山安全技术研究工作。495749247@qq.com
  • 基金资助:
    国家“十三五”重点研发计划项目“深部大矿段多采区时空协同连续采矿理论与技术”(2017YFC0602901)

Stability Prediction of Goaf Based on Stacking Model

Mufan WANG1(),Zhouquan LUO1,Qi YU2()   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Hunan Vocational Institute of Technology,Xiangtan 411100,Hunan,China
  • Received:2020-02-29 Revised:2020-06-11 Online:2020-12-31 Published:2021-01-29
  • Contact: Qi YU E-mail:495749247@qq.com;2646590217@qq.com

摘要:

为了预防采空区安全事故的发生,提高采空区稳定性预测的准确性,选取了影响采空区稳定性的11个主要因素作为特征值,建立了以Random Frost、Adaboost、ExtraTrees和LightGBM为初级学习器,Logistic-Regression为次级学习器的Stacking模型,对采空区稳定性进行预测。将从实际矿山获取的 60 组数据拆分成训练集与测试集对Stacking 模型进行训练学习,同时对比单模型与 Stacking 模型的预测结果。使用F1值与AUC值对模型进行评价,Stacking模型F1值为0.967,AUC值为0.97,远高于Random Frost等传统单一机器学习模型。对于未放入模型训练的测试集数据,Stacking模型的预测准确度也优于Random Frost等传统单一机器学习模型。结果表明:Stacking 模型相比单模型的机器学习方法能够更加精准有效地预测采空区的稳定性等级。

关键词: 采空区, 机器学习, 集成学习, Stacking模型, 稳定性预测, 稳定性等级

Abstract:

In the process of mining,the mining technology mainly based on the open field method will leave a large number of goaves after mining,which has great safety risks.Therefore,the prediction of the stability of the goaf is particularly important.In recent years,with the advent of the era of big data,machine learning and deep learning technology has been introduced into the mining industry.More and more scholars begin to use the prediction method of machine learning to study the stability of goaf.It is found that every single machine term model has its scope of use and scene,when facing a new goaf problem,we can not immediately give the most effective model to adapt to it.At this time,the stacking method derived from integrated learning is born.This article is mainly divided into three parts.The first part mainly introduces the Stacking method,explains the main steps of the method and the choice of the learner.Stacking is generally a two-layer structure.The first layer is composed of various elementary learners.Input the original data set to train them.The second layer uses the output of these primary learners as a new data set and new features into the secondary learner (meta-learner) for training,to complete the stack fusion of the model.The Stacking model requires that the correlation between the primary learners should be as small as possible,and the performance difference between the primary learners should not be too large.The second-level learner should choose a simpler learner.The second part is the construction of Stacking model.This paper selected eleven factors affecting the stability of mined-out area,they are the rock mass structure (X1),geological structure(X2),groundwater (X3),goaf engineering layout (X4),mining perturbation(X5),adjacent cavity (X6),the volume of the goaf (X7),the exposed area of goaf roof (X8),buried depth (X9),goaf span mined-out area ratio (X10),rock compressive strength(X11).By using the eleven dimensional data and the classification of goaf stability as training data,we put them into the stacking model with random frost,AdaBoost,extratrees and lightgbm as primary learners and logistic regression as secondary learners for training.Another part of the training data was used as test data to compare the performance of stacking model and single machine learning model.The experimental results show that the F1 and AUC of stacking model are 0.967 and 0.97 respectively.Far higher than all other single machine learning models.The stacking model is better than other single machine learning models and show stronger generalization ability.Therefore,as the third part,it is concluded that the stacking model can predict the stability of goaf better than the single machine learning model.

Key words: goaf, machine learning, ensemble learning, Stacking model, stability prediction, stability level

中图分类号: 

  • TD76

图1

Stacking 模型流程简图"

图2

模型A 的五折交叉验证"

表 1

采空区稳定性等级分级标准"

稳定性等级稳定性状况失稳风险
1采空区稳定性很好无失稳风险或失稳风险很小
2采空区基本稳定或稳定性较好失稳风险较低
3采空区稳定性较差失稳风险较大
4采空区不稳定或稳定性极差失稳风险很大

表2

定性指标评分标准"

因素影响程度等级地质因素水文因素采空区因素环境因素评分范围
岩体结构 (X1地质构造 (X2地下水 (X3采空区工程 布置(X4采动扰动情况(X5相邻空区情况 (X6
1完整块状结构无断层、褶皱无淋水痕迹合理开采范围无爆破作业影响影响范围内无其他采空区,为孤立空区或为6R之外(R为孤立空区半径)0.75~1.00
2层状结构褶皱影响小围岩可见水迹比较合理开采范围爆破作业影响一般影响范围内采空区面积一般,数量不多且相邻较近0.50~0.75
3碎裂结构断层部分切割或褶皱影响大雨季有淋水部分合理开采范围采场作业影响较大影响范围内采空区面积大,数量多,但分布较为分散0.25~050
4松散结构断层贯穿围岩长期有淋水布置不合理开采范围采场作业影响大影响范围内采空区面积较大,数量较多,相邻较近且比较密集,为采空区群0~0.25

表3

训练集数据"

序号岩体结构(X1地质构造(X2地下水(X3采空区工程布置(X4采动扰动情况(X5相邻空区情况(X6采空区体积(X7)/m3采空区顶板暴露面积(X8)/m2采空区埋藏深度(X9)/m采空区跨高比(X10岩石抗压强度(X11)/MPa等级
131224446 6804 3303704394
222214411 7001 3002502492
333224432 2402 4803003373
432234433 6001 6802704503
5313244179 4005 1003323284
6332344137 7605 7402954523
721114446 5602 9103051531
821211143 6002 1803202592
911214412 0001 2003351661
10123244232 5804 0103802503
1112114433 9002 2603052591
1211211118 8501 4502901611
1311213318 1302 5902011521
1411113329 1602 4302081551
1533223310 5752 3502081562
1611113318 0001 8002082541
1712224425 6001 6004113572
1811211116 0002 0003002542
1911113344 8501 9502012552
2011113337 5005 0001951521
2111113342 5103 2701802512
221212439 7501 3001802542
2312114410 7261 7301802552
2411113311 2201 8702301531
2511113316 3801 1702302532
2611111139 8402 4902302541
2711111131 7202 4402302531
2811234480 0403 4802303433
2911111111 2801 4102302551

表4

测试集数据"

序号岩体结构(X1地质构造(X2地下水(X3采空区工程布置(X4采动扰动情况(X5相邻空区情况(X6采空区体积(X7)/m3采空区顶板暴露面积(X8)/m2采空区埋藏深度(X9)/m采空区跨高比(X10岩石抗压强度(X11)/MPa等级
111113339 8434 9421901521
222311170 4772 5402021493
324233426 3601 1912613733
421111170 8151 5951922462
5112234117 3331 8824042452
6332211104 6612 4981653593
71332326 1283 4982321502
822424486 8111 3262783444
9211313125 9553 8884151442
1024233426 3601 1912612733
1111113311 2201 9862251541
1211111174 8802 1861912522
131212439 7501 3591842542
1411111139 8402 5472252541
15332211104 6612 4981653593

表5

Stacking 模型与各个初级学习器的效果对比"

模型准确率召回率F1 值
Random Frost0.9110.8660.868
Adaboost0.9460.9330.934
ExtraTrees0.9270.9000.901
LightGBM0.9270.9000.901
Stacking0.9700.9660.967

图3

Stacking 模型与各个初级学习器的 ROC 曲线图"

表6

Stacking 模型与各个初级学习器的预测结果对比"

实际等级StackingAdaboostLightGBMRandomFrostExtraTrees
111111
333333
333333
222212
221323
333333
222222
444333
222222
333333
111111
222222
222222
111111
333333
1 冯远建,李子龙.矿山采空区稳定性分析及安全治理方法研究[J].煤炭与化工,2014,37(6):28-30.
Feng Yuanjian,Li Zilong.Mine goaf stability analysis and security management method research[J].Coal and Che-mical Industry,2014,37(6):28-30.
2 晁军,雷醒民,樊育豪.三维有限元数值模拟在采空区稳定性评价中的应用[J].工程建设与设计,2018(23):15-18.
Chao Jun,Lei Xingmin,Fan Yuhao.Application of three-dimensional finite element numerical simulation in stability evaluation of mined-out area[J].Construction and Design for Engineering,2018(23):15-18.
3 杨宁,尹贤刚,钟勇,等.基于3DMine-FLAC3D的复杂空区稳定性分析[J].化工矿物与加工,2019(4):22-24,28.
Yang Ning,Yin Xiangang,Zhong Yong,et al.Stability analysis of complex goaf based on 3DMine-FLAC3D[J].Industrial Minerals and Processing,2019(4):22-24,28.
4 邓岁伟,冯锐,赵铭久.基于ANSYS的采空区稳定性数值模拟分析[J].采矿技术,2018,18(1):34-37.
Deng Suiwei,Feng Rui,Zhao Mingjiu.Numerical simulation analysis of goaf stability based on ANSYS[J].Mining Technology,2018,18(1):34-37.
5 季惠龙,侯克鹏,张成良,等.大型采空区顶板冒落危害预测[J].采矿技术,2010,10(2):50-52,76.
Ji Huilong,Hou Kepeng,Zhang Chengliang,et al.Hazard prediction of roof caving in large goaf [J].Mining Technology,2010,10(2):50-52,76.
6 曾令义,潘冬.崩落法转充填法隔离层安全厚度的确定[J].矿冶工程,2015,35(4):17-20.
Zeng Lingyi,Pan Dong.Determination of safety thickness of isolation layer during transition from caving to cut-and-fill stoping[J].Mining and Metallurgical Engineering,2015,35(4):17-20.
7 张慧生,顾伟.典型曲线法在山东龙口软岩煤矿区开采沉陷预测中的应用[J].地质找矿论丛,2014,29(1):84-90.
Zhang Huisheng,Gu Wei.Establishment and application of typical curve method for Longkou soft rock coal-mining area in Shandong Province[J].Contributions to Geology and Mineral Resources Research,2014,29(1):84-90.
8 许章平,栾元重,相涛,等.基于概率积分法和Kalman滤波模型的矿区变形预测[J].煤炭技术,2018,37(12):111-114.
Xu Zhangping,Luan Yuanzhong,Xiang Tao.Mining deformation prediction based on probability integral method and Kalman filter model[J].Coal Technology,2018,37(12):111-114.
9 孟东芳,唐皓,童锋.基于突变级数法的岩体质量评价[J].中国煤炭地质,2018,30(10):64-69.
Meng Dongfang,Tang Hao,Tong Feng.Rock mass quality assessment based on catastrophe progression method[J].Coal Geology of China,2018,30(10):64-69.
10 王海峰,李夕兵,董陇军,等.基于支持向量机的采空区稳定性分级[J].中国安全生产科学技术,2014,10(10):154-159.
Wang Haifeng,Li Xibing,Dong Longjun,et al.Classification of goaf stability based on support vector machine[J].Journal of Safety Science and Technology,2014,10(10):154-159.
11 黄新典,褚夫蛟.基于逻辑回归-聚类算法的采空区危险等级评价模型[J].金属矿山,2019,48(8):179-184.
Huang Xindian,Chu Fujiao.Risk grade evaluation model of goaf based on logical regression and clustering algorithm[J].Metal Mine,2019,48(8):179-184.
12 李孜军,林武清,陈阳.基于AGA-BP神经网络的采空区危险性评价[J].中国安全生产科学技术,2015,11(7):135- 141.
Li Zijun,Lin Wuqing,Chen Yang.Evaluation on risk of goaf based on AGA-BP neural network[J].Journal of Safety Science and Technology,2015,11(7):135- 141.
13 Qin Y G,Luo Z Q,Ma S W,et al.Evaluation of goaf stability based on transfer learning theory of artificial intelligence[J].IEEE Access,2019,7:96912-96925.
14 李岩,赵建文.基于PCA-SVM 的采空区危险性评价[J].河北冶金,2014(11):72-77.
Li Yan,Zhao Jianwen.Dangerous assessment based on PCA-SVM for stoped-out area[J].Hebei Metallurgy,2014(11):72-77.
15 Wolpert D H.Stacked generalization[J].Neural Networks,1992,5(2):241-259.
16 Breiman L.Random forests[J].Machine Learning,2001,45(1):5-32.
17 Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting[C]// Proceeding of the Second European Conference on Computational Learning Theory.Berlin:Springer-Verlag,1995:23-27.
18 Geurts P, Ernst D, Wehenkel L.Extremely randomized trees[J].Machine Learning, 2006, 63(1):3-42.
19 Ke G L,Meng Q,Finley T,et al.LightGBM:A highly efficient gradient boosting decision tree[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems(NIPS' 17).New York:Curran Associates Inc.,Red Hook,2017:3149-3157.
20 陈怀利.基于盲数理论的采空区危险性评价模型[J].采矿技术,2019,19(3):43-46.
Chen Huaili.Risk evaluation model of goaf based on blind number theory[J].Mining Technology,2019,19(3):43-46.
21 赵超,马俊超,万黎明,等.基于层次可拓分析法的采空区塌陷危险性评价研究[J].安全与环境工程,2016,23(6):35-40.
Zhao Chao,Ma Junchao,Wan Liming,et al.Risk evaluation of underground goaf collapse based on the hierarchy extension analysis[J].Safety and Environmental Engineering,2016,23(6):35-40.
22 汪朝,郭进平,王李管.采空区危险性的支持向量机识别[J].重庆大学学报(自然科学版),2015,38(4):85-90.
Wang Zhao,Guo Jinping,Wang Liguan.Recognition of goaf risk based on support vector machines method[J].Journal of Chongqing University(Natural Science Edition),2015,38(4):85-90.
[1] 李地元, 杨博, 刘子达, 刘永平, 赵君杰. 基于集成树算法的岩石黏聚力和内摩擦角预测方法[J]. 黄金科学技术, 2024, 32(5): 847-859.
[2] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[3] 姜志宏, 陈澳. 融合全监督学习的半监督矿石粒度预测算法[J]. 黄金科学技术, 2024, 32(3): 539-547.
[4] 凡兴禹, 王雪林. 基于改进XGBoost算法的深部巷道松动圈智能预测研究[J]. 黄金科学技术, 2024, 32(1): 109-122.
[5] 许方颖, 邹艳红, 易卓炜, 杨福强, 毛先成. 基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例[J]. 黄金科学技术, 2023, 31(5): 721-735.
[6] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[7] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[8] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[9] 胡建华,郭萌萌,周坦,张涛. 基于改进迁移学习算法的岩体质量评价模型[J]. 黄金科学技术, 2021, 29(6): 826-833.
[10] 叶光祥,黄智群,王晓军,张树标,苑栋. 基于未确知测度理论的石英脉型钨矿山采空区稳定性评价[J]. 黄金科学技术, 2021, 29(3): 433-439.
[11] 廖宝泉,柯愈贤,卿琛,张华熙,黄豪琪,方立发,王成,陶铁军. 基于相对差异函数的金属矿采空区危险性识别[J]. 黄金科学技术, 2021, 29(3): 440-448.
[12] 田睿,孟海东,陈世江,王创业,孙德宁,石磊. 基于机器学习的3种岩爆烈度分级预测模型对比研究[J]. 黄金科学技术, 2020, 28(6): 920-929.
[13] 廖智勤, 王李管, 何正祥. 基于EEMD和关联维数的矿山微震信号特征提取和分类[J]. 黄金科学技术, 2020, 28(4): 585-594.
[14] 党明智,张君,贾明涛. 黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J]. 黄金科学技术, 2020, 28(2): 246-254.
[15] 邓红卫,张维友,虞松涛,高宇旭. 基于变权联系云的采空区稳定性二维评价模型[J]. 黄金科学技术, 2020, 28(1): 32-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!