img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 902-909.doi: 10.11872/j.issn.1005-2518.2020.06.007

• 采选技术与矿山管理 • 上一篇    下一篇

基于小波支持向量机模型的矿区生态安全评价方法研究

谭吉玉(),刘高常()   

  1. 江西理工大学矿业发展研究中心,江西 赣州 341000
  • 收稿日期:2019-12-17 修回日期:2020-07-12 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 刘高常 E-mail:978579775@qq.com;769332408@qq.com
  • 作者简介:谭吉玉(1979-),女,湖北建始人,博士,副教授,从事决策理论与方法研究工作。978579775@qq.com
  • 基金资助:
    江西省高校人文社会科学重点研究基地招标项目“新常态下矿业城市跨区域生态环境治理联动研究”(JD17063);江西理工大学矿业发展研究中心重点课题“江西省矿区环境污染的合作网络治理机制与绿色发展路径研究”(KYZX2017-1);江西理工大学繁荣哲学社会科学重点项目“稀土矿区跨区域污染防治合作长效机制及关系风险研究”(FZ18-ZD-01);江西省教育厅科技项目“稀土矿区跨区域污染防治的府际合作机制及关系风险研究”(GJJ18034)

Ecological Security Evaluation of Mining Area Based on WSVM

Jiyu TAN(),Gaochang LIU()   

  1. Mining Development Research Center,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
  • Received:2019-12-17 Revised:2020-07-12 Online:2020-12-31 Published:2021-01-29
  • Contact: Gaochang LIU E-mail:978579775@qq.com;769332408@qq.com

摘要:

生态环境质量诊断和安全评价是保障矿区经济高质量发展的重要组成部分。针对当前矿区生态安全评价方法精度不高的问题,从生态环境质量、污染物排放、生态保护、环境承载力和系统协调5个方面构建评价指标体系。通过核函数选择,构造广义最优分类超平面,将小波理论和支持向量机方法有机结合,建立联合评价模型,并运用于G稀土矿区进行实例验证。结果表明:该稀土矿区Ⅰ级风险区域(即环境差区)有10个,Ⅱ级风险区域(即环境较差区)为8个。与GIS识别结果比较,模型的误差率为5%,说明模型具有较好的预警精度。模型整体预测性能较优,在非线性时间序列领域具有很好的表现和应用前景。

关键词: 矿区, 生态安全, 评价模型, 小波支持向量机, 核函数, GIS

Abstract:

In the primary stage of mining area development,economic growth should be realized by relying on resource endowment of mining area.The high consumption of resources and energy and the high input of production factors give rise to the huge cost of environmental damage in the mining area,the pollution problems are evolving from simple one-way to complex ones.The system of compensation for ecological and environ-mental damages is conducive to solving the law enforcement dilemma of “corporate pollutes, residents victims, government pays”,and helping China’s ecological and environmental protection to the depth of development.However,ecological safety evaluation can provide a basis for the diagnosis of ecological environment quality and compensation for damages in mining areas,and they are also an important part of high-quality development of mining area economy.Aiming at the low accuracy of themining ecological security evaluation,the index system for mine ecological security evaluation was designed,including mining environment quality,pollutant discharge or emission,ecological protection,carrying capacity and the coordination of ecological system.Furthermore,20 secondary indexes were set,such as vegetation coverage rate,pollution source diffusion rate,land reclamation rate and so on.The quasi-optimal classification hyper-plane was constructed based on selected kernel function to combine Wavelet Theory with Support Vector Machines,and an integer hybrid model was established.The evaluation model was applied to the ‘G’ rare earth mining area,and the results show that there are 10 samples with grade Ⅰ risk level,that is,their environment are poor,and there are 8 samples with grade Ⅱ risk level,that is,the environment is poorer.Compared with results by GIS identifying,the error rate of the model is 5%,which has better warning accuracy.Further,compared with BP neural network,ARIMA and other methods commonly used at present,the proposed model has well-forecasting performance,can represent the nonlinear time series well.So,it has a good application prospect in the field of nonlinear time series.

Key words: mining area, ecological security, evaluation model, Wavelet Support Vector Machines(WSVM), Kernel function, GIS

中图分类号: 

  • X822

图1

矿区生态安全评价指标体系"

表1

常见核函数类型"

核函数类型表达式参数取值
线性核k(xi,xj)=xiTxj
多项式核k(xi,xj)=(xiTxj)dd1
拉普拉斯核k(xi,xj)=exp(-xi-xj22σ2)σ>0
高斯核k(xi,xj)=exp(-xi-xjσ)σ>0
Sigmoid核k(xi,xj)=tanh(βxiTxj+θ)β>0,θ<0

表2

G矿区2011~2015年生态指标样本数据"

指标指标值目标值指标性质
2011年2012年2013年2014年2015年
X1115.3214.7018.6220.7821.6623.04(+)
X1211.127.258.7516.2218.0325.00(+)
X138.066.0310.5823.0621.3018.00(+)
X1450.0042.0054.0065.0076.0090.00(+)
X1521.5023.3012.5012.309.705.00(-)
X1622.4025.3017.9017.5015.7015.00(-)
X2112.9013.0018.0018.6018.8015.00(+)
X2260.8060.2065.7068.3070.6090.00(+)
X237.0012.0011.008.005.002.00(-)
X312.001.006.006.007.0010.00(+)
X326.004.008.0011.0015.0027.00(+)
X3365.0067.0075.0077.0087.0090.00(+)
X341.500.302.002.202.203.00(+)
X4190.0085.0085.0085.0080.0080.00(+)
X4217.0017.0020.0020.0030.0050.00(+)
X431.200.601.201.501.802.00(+)
X442.004.004.004.005.005.00(-)
X5123.5026.7038.5044.8060.4065.00(+)
X5265.0050.0065.0075.0078.0080.00(+)
X5355.0048.0060.0072.0075.0070.00(+)

图2

WSVM训练误差曲线"

表3

G矿区WSVM预测值与目标值比较"

对比项预测值目标值对比项预测值目标值
X112223X321527
X122025X339090
X132518X3433
X148690X418080
X1595X424050
X161415X431.82
X212215X4455
X228090X516165
X2352X527880
X31710X537770

图3

G稀土矿区环境状态图[14]Ⅰ级为环境质量较差区域;Ⅱ级为环境治理差区域;Ⅲ级为环境治理一般区域;Ⅳ级为环境治理较好区域"

1 潘家华,黄承梁,庄贵阳,等.指导生态文明建设的思想武器和行动指南[J].环境经济,2018(增2):12-15.
Pan Jiahua,Huang Chengliang,Zhuang Guiyang,et al.Ideological weapons and action guides to guide the construction of ecological civilization[J].Environmental Economy,2018(Supp.2):12-15.
2 Han B L,Liu H X,Wang R S.Urban ecological security assessment for cities in the Beijing-Tianjin-Hebei metropolitan region based on fuzzy and entropy methods[J].Ecological Modelling,2015,318:217-225.
3 廖振楠,何文,刘洪兴,等.龙南离子型稀土矿山地质环境质量评估研究[J].有色金属科学与工程,2014,14(4):106-111.
Liao Zhennan,He Wen,Liu Hongxing,et al.Quality assessment of geological environment of ion-absorbed rare-earth mine in Longnan County[J].Nonferrous Metals Science and Engineering,2014,14(4):106-111.
4 位振亚,罗仙平,梁健,等.南方稀土矿山废弃地生态修复技术进展[J].有色金属科学与工程,2018,9(4):102-106.
Wei Zhenya,Luo Xianping,Liang Jian,et al.Research progress of ecological restoration of abandoned land in southern rare earth mine[J].Nonferrous Metals Science and Engineering,2018,9(4):102-106.
5 周春,刘立刚,孙晓优.江西有色金属矿区废弃地综合利用生态恢复评价[J].有色金属科学与工程,2016,7(6):115-123.
Zhou Chun,Liu Ligang,Sun Xiaoyou.Evaluation on ecological restoration of comprehensive utilization of nonferrous metal mine spoils in Jiangxi[J].Nonferrous Metals Science and Engineering,2016,7(6):115-123.
6 何玲,贾启建,李超,等.基于生态系统服务价值和生态安全格局的土地利用格局模拟[J].农业工程学报,2016,32(3):275-284.
He Ling,Jia Qijian,Li Chao,et al.Land use pattern simulation based on ecosystem service value and ecological security pattern[J].Transactions of the Chinese Society of Agricultural Engineering,2016,32(3):275-284.
7 Peng J,Zhao S Q,Dong J Q,et al.Applying ant colony algorithm to identify ecological security patterns in megacities[J].Environmental Modelling and Software,2019,117:214-222.
8 刘某承.基于碳足迹的中国能源消费生态安全格局研究[J].景观设计学,2016,4(5):10-17.
Liu Moucheng.The ecological security pattern of China’s energy consumption based on carbon footprint [J].Landscape Architecture Frontiers,2016,4(5):10-17.
9 Bai Y,Jiang B,Wang M,et al.New ecological redline policy(ERP) to secure ecosystem services in China[J].Land Use Policy,2016,55:348-351.
10 Chu X,Deng X Z,Jin G,et al.Ecological security assessment based on ecological footprint approach in Beijing-Tianjin-Hebei region,China[J].Physics and Chemistry of the Earth,Parts A/B/C,2017,101:43-51.
11 Lu X L,Yao S M,Fu G,et al.Dynamic simulation test of a model of ecological system security for a coastal tourist city[J].Journal of Destination Marketing and Management,2019,13:73-82.
12 Popkova E G,Shakhovskaya L S,Abramov S A,et al.Ecological clusters as a tool of improving the environmental safety in developing countries[J].Environment,Development and Sustainability,2016,18(4):1049-1057.
13 Fagan M.Security in the anthropocene:Environment,ecology,escape[J].European Journal of International Relations,2017,23(2):292-314.
14 于扬,王登红,田兆雪,等.稀土矿区环境调查SMAIMA方法体系、评价模型及其应用——以赣南离子吸附型稀土矿山为例[J].地球学报,2017,38(3):335-344.
Yu Yang,Wang Denghong,Tian Zhaoxue,et al.Establishment and application of SMAIMA working method system and environment evaluation model for rare earth elements mine:A case study of ion-absorption type REE mines in southern Jiangxi Province[J].Acta Geoscientica Sinica,2017,38(3):335-344.
15 谭吉玉,刘高常.基于利益相关者视角的稀土产业低碳效率指标设计与决策模型[J].有色金属科学与工程,2017,8(3):121-126.
Tan Jiyu,Liu Gaochang.Low carbon efficiency indicators and decision model of rare earths industry from the stakeholders’ perspective[J].Nonferrous Metals Science and Engineering,2017,8(3):121-126.
16 徐水太,项宇,刘中亚.离子型稀土原地浸矿地下水氨氮污染模拟与预测[J].有色金属科学与工程,2016,7(2):140-146.
Xu Shuitai,Xiang Yu,Liu Zhongya.Simulation and predication of ammonia nitrogen contamination of groundwater in ionic adsorption rare earth in-situ leaching mining[J].Nonferrous Metals Science and Engineering,2016,7(2):140-146.
17 刘高常,刘建胜.基于小波支持向量机模型的财务风险预警与防范[J].财会通讯,2009(11):148-149.
Liu Gaochang,Liu Jiansheng.Early warning and prevention of financial risks based on wavelet support vector machine model[J].Communication of Finance and Accounting,2009(11):148-149.
18 Critianini N,Shawe-Tayer J.支持向量机导论[M].北京:电子工业出版社,2004:82-98.
Critianini N,Shawe-Tayer N.Introduction to Support Vector Machines[M].Beijing:Publishing House of Electronics Industry,2004:82-98.
19 岑涌,钟萍,罗林开.基于GA-SVM的企业财务困境预测[J].计算机工程,2008,34(7):223-225.
Cen Yong,Zhong Ping,Luo Linkai.Prediction financial distress of firms based on GA-SVM[J].Computer Engineering,2008,34(7):223-225.
20 王华忠,俞金寿.核函数方法及其模型选择[J].江南大学学报(自然科学版),2006,5(4):500-504.
Wang Huazhong,Yu Jinshou.Study on the Kernel-based methods and its model selection[J].Journal of Southern Yangtze University(Natural Science Edition),2006,5(4):500-504.
21 Vapnik V N.统计学习理论的本质[M].张学工,译.北京:清华大学出版社,2000.
Vapnik V N.The Essence of Statistical Learning Theory[M].Zhang Xuegong,Trans.Beijing:Tsinghua University Press,2000.
[1] 刘伟, 闫晓宇, 刘庆朋, 孙欣然. 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024, 32(5): 871-881.
[2] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[3] 苏力, 朱海军, 谷守江, 杨兴科, 赵翌辰, 孙雪平, 何虎军, 韩珂, 张玉瑜, 谭江, 谢愿龙, 张龙, 高立博. 宁夏海原西华山地区金矿床地质地球化学特征及成因分析[J]. 黄金科学技术, 2024, 32(2): 191-206.
[4] 顾清华, 周琼, 王丹. 基于改进YOLOv8的露天矿区行车障碍物检测[J]. 黄金科学技术, 2024, 32(2): 345-355.
[5] 顾清华, 杜艺凡, 李萍丰, 王丹. 基于加权双向特征融合的矿区道路落石检测[J]. 黄金科学技术, 2023, 31(6): 953-963.
[6] 宁钧陶, 黄宝亮, 董国军, 周岳强, 高卓龙, 康博. 湘东北热液型钴矿床中含钴矿物特征及其对成矿的指示意义[J]. 黄金科学技术, 2023, 31(4): 531-545.
[7] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[8] 范红科,郭根明,董波波,张凯,刘豫新. 新疆焉耆县松树达坂金矿区岩石地球化学异常特征及找矿效果[J]. 黄金科学技术, 2021, 29(4): 477-488.
[9] 王宇慧,罗先熔,何旺,王东,汤国栋,商振城. 广西罗城县记洞湾矿区地电化学提取法寻找隐伏锡铜多金属矿的研究及找矿预测[J]. 黄金科学技术, 2021, 29(4): 500-509.
[10] 王玺,马春德,刘兴全,姜明伟,范玉赟. 滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系[J]. 黄金科学技术, 2021, 29(4): 535-544.
[11] 张静静,冷成彪. 云南中甸地区斑岩铜矿床的保存与夷平面关系探讨——基于地貌因子分析[J]. 黄金科学技术, 2021, 29(3): 334-344.
[12] 那华, 吕国诚, 张丹, 王丽娟, 廖立兵, 郭利杰, 孔令常, 武丽娟, 卞健华. 矿区典型环境污染及其充填胶凝固定化研究进展[J]. 黄金科学技术, 2020, 28(5): 646-657.
[13] 段留安, 魏有峰, 陈雄军, 韩小梦, 郭云成. 山东胶莱盆地东北缘前垂柳矿区金矿资源潜力分析[J]. 黄金科学技术, 2020, 28(5): 701-711.
[14] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[15] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!