img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2020, Vol. 28 ›› Issue (6): 930-939.doi: 10.11872/j.issn.1005-2518.2020.06.092

• 采选技术与矿山管理 • 上一篇    下一篇

高海拔地区矿井风机状态动态评估

王利鹏(),闫放(),李孜军,王方   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-05-25 修回日期:2020-07-18 出版日期:2020-12-31 发布日期:2021-01-29
  • 通讯作者: 闫放 E-mail:lpwang@csu.edu.cn;yanfang3543@csu.edu.cn
  • 作者简介:王利鹏(1994-),男,河南洛阳人,硕士研究生,从事风险分析与评估、安全评价技术研究工作。 lpwang@csu.edu.cn
  • 基金资助:
    国家重点研发计划项目“高海拔高寒地区矿井通风安全保障技术”(2018YFC0808404)

Dynamic Status Evaluation of Main Fans of Mine at High Altitude Region

Lipeng WANG(),Fang YAN(),Zijun LI,Fang WANG   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-05-25 Revised:2020-07-18 Online:2020-12-31 Published:2021-01-29
  • Contact: Fang YAN E-mail:lpwang@csu.edu.cn;yanfang3543@csu.edu.cn

摘要:

高原矿井风机在矿产资源的开采过程中发挥着极其重要的作用,开展矿井风机状态评估对促进矿井风机安全管理具有十分重要的现实意义。针对高原矿井所处环境的复杂性,构建了高原矿井风机评估指标体系。利用不确定性区间层次分析法和集对分析理论中的三元联系数精确地计算了高原矿井风机指标权重,在此基础上,构建了五元联同异反评估模型对矿井风机进行了静态评估;此外,引入偏联系数理论对矿井风机未来的运行状态进行了预测和评估,从而实现了矿井风机静态和动态评估的目的。最后以云南省某金属矿井风机为例,验证了该方法的适用性和有效性。

关键词: 高原矿井风机, 集对分析, 偏联系数, 状态评估, 不确定性区间层次分析法, 金属矿山

Abstract:

Mine fans at high altitude region plays an extremely important role in the mining process of mineral resources.The mine fans provide a guarantee for the safe mining of mineral resources by providing fresh air and eliminating toxic and harmful gases,so they are an important part of safe production.It is of great practical significance to carry out a scientific assessment of the operation status of mine fans to promote the safety management of mine fans. In view of the complexity of the environment in which plateau mines are located,the mine fans evaluation index system was constructed,including one overall objective,four middle factors and sixteen criteria. Due to the uncertainty in the calculation process of the index weights,the weighted interval was calculated using the analytic hierarchy process (IAHP). In order to obtain the accurate index weights,the 3-element connection number was used to convert the interval weights into accurate weights.Therefore,the uncertainty in the process of obtaining index weights can be effectively resolved,making the index weights more reasonable. In addition,the establishment of five-element identical-discrepancy-contrary evaluation model realizes the purpose of static assessment of the mine fan.The partial connection number theory in the set pair theory is introduced to predict and evaluate the operation state of the mine fan.Thereby realizing the static and dynamic evaluation for fans at high altitude region.The operation status of the mine fans is evaluated from the static and dynamic dimensions,making the evaluation results more practical.Finally,an example of a mine fan in Yunnan Province was introduced to verify the applicability and effectiveness of the method.The evaluation result of the operation state of the mine fans is medium level. In addition,the operation state of the mine fans was analyzed using partial connection number.Therefore,the future development trend of the indicators of mine fans can be predicted.The analysis results show that these indicators,namely environmental humidity,external structure status and personnel’s physical condition,will decline sharply in the future.Therefore,those should be classified as high risk factors,and corresponding management measures and technical measures should be proposed to improve the operation status of the fan.The evaluation results provide an important reference for the safety management of mine fans in the plateau area,and can effectively prevent the accidents caused by the poor operation of mine fans.Therefore,the method proposed can be used to evaluate the status of mine fans in the plateau area,which can not only grasp the current operation status of the fan,but also predict the development trend of the future status of the fan.The targeted suggestions for fault diagnosis,risk management and optimization of mine fans in the plateau area can be put forward.

Key words: plateau mine fans, set pair analysis, partial connection number, status evaluation, the uncertainty interval analytic hierarchy process, metal mines

中图分类号: 

  • X936

图1

高原地区矿井风机评估指标体系"

表1

矿井风机指标权重"

二级指标权重三级指标权重
环境因素A0.4989环境温度A10.1207
环境湿度A20.2282
大气压力A30.6511
管理因素B0.0148管理制度B10.1447
应急方案B20.2911
人员分配B30.5642
风机因素C0.4677外部结构C10.4401
保护设施C20.0452
监控系统C30.0579
维修措施C40.1073
能耗状态C50.1632
通风效率C60.1863
人的因素D0.0186心理状况D10.4152
身体状况D20.2164
工作能力D30.2825
教育水平D40.0859

表2

矿井风机评估结果"

二级指标三级指标静态联系数集对势
环境因素A环境温度A10.01+0.30i1+0.40i2+0.10[i3+0.1j均势
环境湿度A20.00+0.30i1+0.40i2+0.20i3+0.10j均势
大气压力A30.00+0.30i1+0.40i2+0.20i3+0.10j均势
μ0.01+0.30i1+0.40i2+0.19i3+0.10j均势
管理因素B管理制度B10.30+0.20i1+0.30i2+0.10i3+0.10j偏同势
应急方案B20.20+0.40i1+0.30i2+0.00i3+0.10j均势
人员分配B30.10+0.30i1+0.30i2+0.30i3+0.00j均势
μ0.16+0.31i1+0.30i2+0.18i3+0.04j偏同势
风机因素C外部结构C10.10+0.20i1+0.30i2+0.10i3+0.30j偏反势
保护设施C20.00+0.30i1+0.30i2+0.30i3+0.10j均势
监控系统C30.30+0.30i1+0.10i2+0.10i3+0.20j均势
维修措施C40.10+0.30i1+0.30i2+0.20i3+0.10j均势
能耗状态C50.10+0.30i1+0.50i2+0.00i3+0.10j均势
通风效率C60.10+0.20i1+0.40i2+0.20i3+0.10j均势
μ0.11+0.24i1+0.34i2+0.12i3+0.19j偏同势
人的因素D心理状况D10.10+0.30i1+0.40i2+0.00i3+0.20j均势
身体状况D20.00+0.10i1+0.30i2+0.40i3+0.20j偏反势
工作能力D30.20+0.10i1+0.40i2+0.10i3+0.20j均势
教育水平D40.20+0.40i1+0.20i2+0.10i3+0.10j均势
μ0.11+0.21i1+0.38i2+0.12i3+0.18j均势
μCN0.06+0.27i1+0.37i2+0.16i3+0.14j均势

表3

偏联系数计算结果"

一级指标二级指标一阶偏联系数趋势二阶偏联系数趋势三阶偏联系数趋势

四阶偏

联系数

趋势

环境因素

A

环境温度A10.25+0.43i1+0.80i2+0.50i3下降0.37+0.35i1+0.62i2下降0.51+0.36i1上升0.59上升
环境湿度A20.00+0.43i1+0.67i2+0.67i3下降0.00+0.39i1+0.50i2下降0.00+0.44i1下降0.00过渡
大气压力A30.00+0.43i1+0.67i2+0.67i3下降0.00+0.39i1+0.50i2下降0.00+0.44i1下降0.00过渡
μ0.03+0.43i1+0.68i2+0.66i3下降0.07+0.39i1+0.51i2下降0.63+0.37i1下降0.26上升

管理因素

B

管理制度B10.60+0.40i1+0.75i2+0.50i3上升0.60+0.35i1+0.60i2下降0.63+0.37i1上升0.63上升
应急方案B20.33+0.57i1+1.00i2+0.00i3上升0.37+0.36i1+1.00i2下降0.50+0.27i1上升0.65上升
人员分配B30.25+0.50i1+0.50i2+1.00i3下降0.33+0.50i1+0.33i2下降0.40+0.60i1下降0.40上升
μ0.34+0.51i1+0.63i2+0.82i3下降0.40+0.45i1+0.43i2下降0.47+0.51i1下降0.48上升

风机因素

C

外部结构C10.33+0.40i1+0.75i2+0.25i3上升0.45+0.35i1+0.75i2下降0.57+0.32i1上升0.64上升
保护设施C20.00+0.50i1+0.50i2+0.75i3下降0.00+0.50i1+0.40i2下降0.00+0.56i1下降0.00过渡
监控系统C30.50+0.75i1+0.50i2+0.33i3上升0.40+0.60i1+0.60i2下降0.40+0.50i1下降0.44上升
维修措施C40.25+0.50i1+0.60i2+0.67i3下降0.33+0.45i1+0.47i2下降0.42+0.49i1下降0.46上升
能耗状态C50.25+0.38i1+1.00i2+0.00i3上升0.40+0.27i1+1.00i2下降0.59+0.21i1上升0.74过渡
通风效率C60.33+0.33i1+0.67i2+0.67i3下降0.50+0.33i1+0.50i2下降0.60+0.40i1上升0.60上升
μ0.31+0.41i1+0.74i2+0.39i3下降0.43+0.36i1+0.66i2下降0.55+0.35i1上升0.61上升

人的因素

D

心理状况D10.25+0.43i1+1.00i2+0.00i3上升0.37+0.30i1+1.00i2下降0.55+0.23i1上升0.70上升
身体状况D20.00+0.25i1+0.43i2+0.67i3下降0.00+0.37i1+0.39i2下降0.00+0.48i1下降0.00过渡
工作能力D30.67+0.20i1+0.80i2+0.33i3上升0.77+0.20i1+0.71i2下降0.79+0.22i1上升0.78上升
教育水平D40.38+0.67i2+0.67i2+0.50i3下降0.33+0.50i1+0.57i2下降0.40+0.47i1下降0.46上升
μ0.34+0.36i1+0.76i2+0.40i3下降0.49+0.32i1+0.66i2下降0.61+0.33i1上升0.65上升
μCN0.18+0.42i1+0.7i2+0.53i3下降0.30+0.38i1+0.57i2下降0.44+0.40i1上升0.53上升

图2

一阶偏联系数"

图3

二阶偏联系数"

图4

三阶偏联系数"

图5

四阶偏联系数"

1 杨彪.高寒高海拔地区矿山工程设计要点思考[J].中国钼业,2018,42(3):11-16.
Yang Biao.Key design consideration for the mine engineering in the alpine and high-altitude regions [J]. China Molybdenum,2018,42(3):11-16.
2 姚银佩,欧志成,李印洪,等.高海拔矿山通风系统改造方案优选研究[J]有色金属(矿山部分),2019,71(3):77-80.
Yao Yinpei,Zhicheng Ou,Li Yinhong,et al.Optimization of ventilation system transformation at high altitude mine[J].Nonferrous Metals(Mine Section),2019,71(3):77-80.
3 张亚明,何水清,李国清,等.基于Ventsim的高原矿井通风系统优化[J].中国矿业,2016,25(7):82-86.
Zhang Yaming,He Shuiqing,Li Guoqing,et al. Optimization of plateau mine ventilation system based on Ventsim[J].China Mining Magazine,2016,25(7):82-86.
4 王瑜敏,黄玉诚.高海拔矿井风机通风降效特征的研究[J].金属矿山,2020(2):194-198.
Wang Yumin,Huang Yucheng.Research on characteristics of ventilation effect’s reduction of fan in high altitude mines [J]. Metal Mine,2020(2):194-198.
5 师文革.高原寒冷条件下南水北调西线工程施工人机效率的思考[J].西北水力发电,2004(2):67-69,72.
Shi Wenge. On manpower and machine efficiency of water diversion from south to north for west line construction under the condition on cold plateau [J]. Northwest Hydropower,2004(2):67-69,72.
6 王朋基,董崇民,宋玉红.高寒地区人工机械施工效率研究[J]. 河南水利与南水北调,2010(3):66-69.
Wang Pengji,Dong Chongmin,Song Yuhong. Research on construction efficiency of artificial machinery in alpine region [J]. Water Resources and South to North Water Diversion,2010(3):66-69.
7 马宁,胡乃联,李国清,等.基于模糊层次分析法的高原矿井人机功效评价[J].黄金科学技术,2019,27(6):871-878.
Ma Ning,Hu Nailian,Li Guoqing,et al. Evaluation of human-machine effectiveness of plateau mine based on fuzzy analytic hierarchy process[J].Gold Science and Technology,2019,27(6):871-878.
8 宋品芳,李孜军,李蓉蓉,等.基于熵权模糊法的高海拔矿井风机性能影响因素分析[J].黄金科学技术,2020,28(3):1-12.
Song Pinfang,Li Zijun,Li Rongrong,et al. Analysis of factors influencing the performance of high altitude mine fan based on entropy weight fuzzy method[J]. Gold Science and Technology,2020,28(3):1-12.
9 李琦,王峰,王明年.高海拔环境对施工设备机械效率的影响研究[J].铁道科学与工程学报,2017,14(9):1974-1982.
Li Qi,Wang Feng,Wang Mingnian.Study on mechanical efficiency of construction equipment in high altitude environment [J]. Journal of Railway Science and Engineering,2017,14(9):1974-1982.
10 Villiers D D,Mathews M J,Maré P,et al. Evaluating the impact of auxiliary fan practices on localised subsurface ventilation[J].International Journal of Mining Science and Technology,2019,29 (6):933-941.
11 Hirano T,Takahashi K,Minorikawa G.Study on performance evaluation of small axial fan[J].Open Journal of Fluid Dynamics,2017,7 (4):546-556.
12 赵克勤,宣爱理.集对论——一种新的不确定性理论方法与应用[J].系统工程,1996(1):18-23,72.
Zhao Keqin,Xuan Aili.A new method and application of uncertainty theory [J].System Engineering,1996(1):18-23,72.
13 Yan F,Xu K L. A set pair analysis based layer of protection analysis and its application in quantitative risk assessment[J].Journal of Loss Prevention in the Process Industries,2018,55:313-319.
14 Yan F,Xu K L.Application of a cloud model-set pair analysis in hazard assessment for biomass gasification stations[J].PLOS ONE,2017,12(1):e0170012.
15 李德顺.基于广义集对分析的系统危险性评价研究[D].沈阳:东北大学,2010.
Li Deshun.Research on System Risk Assessment Based on Generalized Set Pair Analysis[D].Shenyang:Northeastern University,2010.
16 Cui Y,Feng P,Jin J L,et,al. Water resources carrying capacity evaluation and diagnosis based on set pair analysis and improved the entropy weight method[J].Entropy-Switz,2018,20(5):359.
17 王松江,陈中奎.多元联系数法在高速公路PPP项目风险评价中的应用[J].昆明理工大学学报(自然科学版),2020,45(2):130-142.
Wang Songjiang,Chen Zhongkui.Application of multivariate connection number method in risk assessment of expressway PPP project[J].Journal of Kunming University of Science and Technology (Natural Science),2020,45(2):130-142.
18 许逊哲,蒯仂,茹意,等.基于集对分析疗效曲线与偏联系数的银屑病用药优选探讨[J].中华中医药学刊,2018,36(8):1822-1825.
Xu Xunzhe,Kuai Le,Ru Yi,et al. Optimization of psoriasis medication based on set pair analysis,efficacy curve and partial correlation coefficient[J].Chinese Archives of Traditional Chinese Medicine,2018,36(8):1822-1825.
19 郑侨宏,韩勇.基于多元联系数的矿工不安全行为风险态势评估[J].中国安全生产科学技术,2018,14(2):186-192.
Zheng Qiaohong,Han Yong. Risk state assessment on unsafe behavior of miners based on multivariate connection number[J]. Journal of Safety Science and Technology,2018,14(2):186-192.
20 谢红涛,李波,赵云胜.基于联系数的地铁隧道施工邻近建筑物风险评价[J].工业安全与环保,2014,40(7):16-19.
Xie Hongtao,Li Bo,Zhao Yunsheng.Risk assessment of neighboring building in metro tunneling construction based on connection number[J].Industrial Safety and Environmental Protection,2014,40(7):16-19.
21 吴亭,赵克勤,张清河.偏联系数在投标企业发展趋势分析中的应用[J].数学的实践与认识,2008(5):16-21.
Wu Ting,Zhao Keqin,Zhang Qinghe.Apply of partial connection number in the analysis development trend of bidding enterprise [J]. Journal of Mathematics in Practice and Theory,2008(5):16-21.
22 覃杰,赵克勤.基于偏联系数的医院医疗质量发展趋势综合分析[J].中国医院统计,2007(2):127-129,132.
Qin Jie,Zhao Keqin. The synthetic analysis of developing trend of medical quality of hospital based on partial connection number[J].Chinese Journal of Hospital Statistics,2007(2):127-129,132.
23 国家安全生产管理总局.金属非金属矿山在用主通风机系统安全检查规范:A[S].北京:煤炭工业出版社,2016.
State Administration of Work Safety of the People's Republic of China. Safety testing specification of in-service main ventilator system for metal and nonmetal mines:A[S].Beijing:Coal Industry Press,2016.
24 王久玲,李国清,胡乃联. 高原矿井作业人员环境适应性分析[J]. 中国安全科学学报,2015,25(8):22-28.
Wang Jiuling,Li Guoqing,Hu Nailian.Environment adaptability analysis of high altitude miners[J].China Safety Science Journal,2015,25(8):22-28.
25 Wu Q L,Peng C Y. Comprehensive benefit evaluation of the power distribution network planning project based on improved IAHP and multi-level extension assessment method[J].Sustainability-Basel,2016,8 (8):796.
[1] 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108.
[2] 黄爽, 贾明涛, 鲁芳. 基于启发式遗传算法的地下采场作业计划优化模型[J]. 黄金科学技术, 2023, 31(4): 669-679.
[3] 聂振宇,周科平,梁志鹏. 基于VR技术的矿山冒顶片帮事故教学培训[J]. 黄金科学技术, 2021, 29(4): 620-628.
[4] 史秀志,丁春胜,秦亚光. 金属矿山安全文化对员工安全行为的作用机理研究[J]. 黄金科学技术, 2021, 29(4): 593-601.
[5] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[6] 李蓉蓉,李孜军,黄义龙,赵淑琪. 基于ANP的高海拔矿山掘进工作面通风方式优选[J]. 黄金科学技术, 2020, 28(2): 301-308.
[7] 程力,刘焕新,朱明德,吴钦正. 金属矿山地下采空区问题研究现状与展望[J]. 黄金科学技术, 2020, 28(1): 70-81.
[8] 代转,罗周全,秦亚光,文磊,丁春胜,董喆喆. 地下金属矿山广义安全管理模型构建及评价[J]. 黄金科学技术, 2019, 27(6): 920-930.
[9] 王石,石勇,王万银. 基于模糊多元联系度模型的尾矿库综合安全评价[J]. 黄金科学技术, 2019, 27(6): 903-911.
[10] 金家聪,陈庆发. 协同采矿方法的创新思维与创新技法[J]. 黄金科学技术, 2019, 27(5): 712-721.
[11] 曹家源,马凤山,郭捷,张国栋,李兆平. 海底倾斜矿体开采沉陷预测研究[J]. 黄金科学技术, 2019, 27(4): 522-529.
[12] 卢富然, 陈建宏. 基于AHP和熵权TOPSIS模型的岩爆预测方法[J]. 黄金科学技术, 2018, 26(3): 365-371.
[13] 丁剑锋. 某金矿矿仓治理研究[J]. 黄金科学技术, 2017, 25(4): 52-57.
[14] 尹土兵,王品,张鸣鲁. 基于AHP及模糊综合评判的地下金属矿山安全分析与评价[J]. 黄金科学技术, 2015, 23(3): 60-66.
[15] 郎雅平,张智斌,姜浩刚. 建设工程审计在金属矿山的应用[J]. J4, 2011, 19(5): 69-71.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!