img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 129-135.doi: 10.11872/j.issn.1005-2518.2021.01.059

• 采选技术与矿山管理 • 上一篇    下一篇

梅山铁矿通风系统多时段变频分风方法应用

许志逞1,居伟伟2,3,4()   

  1. 1.南京宝地梅山产城发展有限公司矿业分公司,江苏 南京 210012
    2.中钢集团马鞍山矿山研究总院股份有限公司,安徽 马鞍山 243000
    3.金属矿山安全与健康国家重点实验室,安徽 马鞍山 243000
    4.华唯金属矿产资源高效循环利用国家工程研究中心有限公司,安徽 马鞍山 243000
  • 收稿日期:2020-03-17 修回日期:2020-09-21 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 居伟伟 E-mail:juweiwei2004@126.com
  • 作者简介:许志逞(1985-),男,江苏南京人,工程师,从事矿井通风除尘技术相关工作。406598050 @qq.com
  • 基金资助:
    “十三五”国家重点研发计划项目“金属非金属矿山采运过程物理化学除尘技术与装备”(2017YFC0805204);安徽省科技重大专项项目“工业企业低浓度VOC废气净化设备与技术研究”(17030801034)

Application of Multi-period Variable Frequency Air Distribution Method in Ventilation System of Meishan Iron Mine

Zhicheng XU1,Weiwei JU2,3,4()   

  1. 1.Nanjing Baodi Meishan Production City Development Co. ,Ltd. ,Mining Branch,Nanjing 210012,Jiangsu,China
    2.Sinosteel Ma’anshan Institute of Mining Research Co. ,Ltd. ,Ma’anshan 243000,Anhui,China
    3.State Key Laboratory of Safety and Health for Metal Mine,Ma’anshan 243000,Anhui,China
    4.Huawei National Engineering Research Center Co. ,Ltd. ,of High Efficiency Cyclic Utilization of Metal Mineral Resources,Ma’anshan 243000,Anhui,China
  • Received:2020-03-17 Revised:2020-09-21 Online:2021-02-28 Published:2021-03-22
  • Contact: Weiwei JU E-mail:juweiwei2004@126.com

摘要:

梅山铁矿通风系统15 台主通风机总装机容量为2 730 kW,全天满负荷运行实耗功率为1 940.76 kW,每年通风成本高达1 445.09万元,通风风量及能耗浪费严重。从矿井风量的“供需平衡”理论出发,根据电机学和流体力学理论中频率、转速和风量之间的关系式,精确计算出满足3个时段矿井需风量时各主通风机的实际运行频率,然后通过远程控制系统对各主通风机进行精确调频,按需通风。系统运行正常后实际风量能够满足3个时段所需风量的要求,各时段实耗功率分别为1 093.28 kW、1 385.06 kW和1 786.38 kW,15台主通风机每年可节省通风成本386.59万元,解决了主通风机满负荷运行造成的风量和能耗浪费等问题。

关键词: 多时段, 多风机, 通风系统, 按需通风, 精确变频, 实耗功率, 通风节能

Abstract:

Meishan iron mine adopts the ventilation system of four-stage progressive return fan station,with many main fans and wide distribution.In order to strengthen the management of ventilation system,the remote control system of multi-stage fan station of the mine was gradually established in 2006.Main fans are equipped with frequency converter,total installed capacity of 15 main fans is 2 730 kW,actual power consumption of full-time operation is 1 940.76 kW,and the annual ventilation cost is up to 14.4509 million Yuan.If the ventilation of working faces with constant air volume according to the maximum demand,it shall be inevitably result in the waste of air volume and energy consumption.At present,changing the characteristic curves of the main fans to adjust the air volume can be achieved by adjusting the installation angle of the blade or the frequency conversion of 1 Hz amplitude,but this method is time-consuming,laborious and difficult,and the method of precise frequency modulation to adjust the air volume is relatively weak.Therefore,based on the theory of “balance of supply and demand”,ventilation period is divided into three,according to the number of mining face,driving working face,other working faces and chambers,and given a certain air leakage coefficient to determine the actual air volume in three periods for ventilation on demand,which can maximize the effect of ventilation and energy saving.According to the relationship between frequency,rotation speed and air volume in the theory of electromotor and fluid mechanics,the actual operating frequency of each main fan meeting the mine air demand in three periods was calculated accurately.Each main fan is precisely and remotely frequency modulated by PLC remote control system,which simplifies the complicated regulation mode of ventilation management personnel adjusting air volume by frequency 1 Hz.After normal operation,the actual air volume in three periods can meet the requirements,and the actual power consumption in each period is 1 093.28 kW,1 385.06 kW and 1 786.38 kW.Through the implementation of research plan of multi time precise frequency conversion and energy saving ventilation technology,the ventilation cost of mine ventilation system is saved by 3.865 million Yuan per year,which solves the problems of air volume,energy consumption and waste caused by full ventilation of the mine ventilation system.The effect is remarkable,which embodies the advanced nature of modern mine ventilation and energy saving technology,and fully displays the advantages of multi-stage time station frequency conversion ventilation “intelligent” energy saving.

Key words: multi-period, multi-fan, ventilation system, ventilation on demand, precise frequency conversion, actual power consumption, ventilation and energy saving

中图分类号: 

  • TD724

表1

通风系统机站风机参数"

安装位置风机型号数量/台额定功率/kW叶片角度/(°)风量范围/(m3·s-1风压范围/Pa
-318 m水平东南井回风机站K45-6-№1942004059.8~113.2920~1 766
-330 m水平西风井回风机站K45-6-№1942004059.8~113.2920~1 766
-402 m水平北风井进风机站K45-6-№1942004059.8~113.2920~1 766
-402 m水平南风井进风机站K40-6-№1931104039.5~86.0277~1 280

图1

梅山铁矿通风系统现状示意图"

表2

通风系统现状检测结果"

编号进风井进风量/(m3·s-1回风井回风量/(m3·s-1
合计566.04575.70
1南风井157.44主斜坡道38.40
2西南井60.17东南井293.47
3北风井267.56西风井282.23
4副井17.72
5主井1#、2#24.75

表3

三时段矿井实际需风量计算结果"

序号类型早班需风量/(m3·s-1中班需风量/(m3·s-1晚班需风量/(m3·s-1
合计430.78460.89539.53
1回采工作面需风量198.80227.20262.70
2掘进工作面需风量68.9062.0182.68
3硐室需风量40.0040.0040.00
4漏风系数1.41.41.4

图2

不同转速下主通风机的特性曲线注:R为风阻特性曲线;Ⅰ、Ⅱ、Ⅲ分别为不同转速下的风机特性曲线;N0、N1和N2分别为风阻特性曲线和各风机特性曲线相交的工况点;P0、P1、P2分别为对应N0、N1和N2工况点的风机风压;Q0、Q1和Q2分别为对应N0、N1和N2工况点的风机风量"

表4

三时段主通风机运行频率计算结果"

序号时段所需风量/(m3·s-1计算频率/Hz运行频率/Hz
1早班430.7837.4138
2中班460.8940.0341
3晚班539.5346.8647

表5

通风系统三时段应用效果检测数据"

序号时段运行频率 /Hz所需风量 /(m3·s-1实际风量 /( m3·s-1实耗功率 /kW
1早班38430.78436.571 093.28
2中班41460.89470.121 385.06
3晚班47529.89542.581 786.38
Chatterjee A,Zhang L J,Xia X H,2015.Optimization of mine ventilation fan speeds according to ventilation on demand and time of use tariff [J].Applied Energy,146:65-73.
Cui Renjie,2017.Application of frequency converter in energy saving monitoring system of coal mine ventilator[J].Coal and Chemical Industry,(12):86-93.
Ge Qifa,Yu Runcang,Zhu Weigen,al et,2017a.Application of VOD ventilation new technology in a mine project [J].China Nonferrous Metallurgy,(6):58-63.
Ge Qifa,Zhu Weigen,Zhu Ruijun,al et,2017b.Research of mining method and ventilation control for difficult-to-mine ore bodies in deep mine[J].Nonferrous Metals Engineering,7(6):86-89,99.
Gong Suoguo,Hong Houshan,Huang Xin,al et,2002.Computerized centralized monitoring system for the ventilation of multistage fan stations[J].Metal Mine,(4):49-52.
Guo Yi,Wu Suzhen,Wenjuan Lü,2007.The energy-saving analysis of the frequency converter in the course of the fan moving[J].Journal of Zhengzhou Econom ICS & Management Institute,(9):90-92.
Han Jing,Ding Changdong,Jiang Shuguang,al et,2016.Mathematical model of reliability evaluation on air volume of ventilation system in volume adjustment by frequency conversion[J].Journal of Safety Science and Technology,(3):143-148.
Hu Y N,Koroleva O I,Krstic M,2003.Nonlinear control of mine ventilation networks[J].Systems & Control Letters, 49(4):239-254.
Jia Anmin,2012.Remote monitoring and energy saving research of multistage fan station ventilation[J].Metal Mine,(6):113-119.
Ju Hesen,Huang Shouyuan,2013.Optimization and reformation of ventilation system in Datuanshan mining area of Dongguashan copper mine[J].Modern Mining,(7):98-100.
Li G,Kocsis C,Hardcastle S,2011.Sensitivity analysis on parameter changes in underground mine ventilation systems[J].Journal of Coal Science & Engineering,17(3) :251-255.
Liu Jie,Xie Xianping,2010.Principle of energy saving of multi-fan and multistage fan station ventilation system[J].Metal Mine,(5) :71-74.
Liu Jiefeng,2013.Energy-saving analysis of frequency conversion technology in ventilation system[J].Jiangxi Coal Science & Technology,(2):134-135.
Nie Wenyan,Jin Lin,Wang Zhonggen,2006.Application of variable frequency technology and fuzzy control for local ventilators.[J].Coal Mine Machinery,(8):147-149.
Pan Junyi,Zhang Tao,Cai Shunshuo,al et,2002.Construction and experience of ventilation system in the second stage of Meishan iron mine[J].Metal Mine,(11):53-55.
Sun Lin,Guo Liang,2005.Shaft ventilating system based on technique of speed control by frequency variation[J].Mining Engineering,(6):55-56.
Wang Jianbo,Zhou Wei,Wu Lengjun,al et,2015.Application of centralized remote control technology in the balance regulation of the ventilation system air pressure[J].Metal Mine,(4):282-286.
Wang Tiantao,2010.Frequency conversion technology and its application in mine main fan[J].Coal,19(3):43-45.
Wang Xiaodong,2018.Analysis of intelligent ventilation system in modern mines[J].Energy and Energy Conservation,(10):175-176.
Wu Hailiang,Wang Peng,Pan Junyi,al et,2014.Study on underground VOD intelligent ventilation technology of metal mine[J].Metal Mine,(6):123-127.
Xu Ruilong,Shi Shengrong,1985.The optimal method of air distribution needed—The method of path[J].Journal of Fuxin Mining Institute, 4(2):61-69.
Yang Jie,Zhao Liangang,Quan Fang,2015.Current situation of coal mine ventilation system and design of intelligent ventilation system[J].Industry and Mine Automation,41(11):74-77.
Yuan Meifang,2013.Control of the underground main fan speed and air output with LOGO time-sharing and frequency conversion[J].Metal Mine,(8):138-140.
Zhang Sasa,Ren Gaofeng,Zhang Congrui,al et,2015.Intellisense and remote centralized security monitoring system for the ventilation system in deep mining[J].Journal of Wuhan University of Technology,37(1):104-108.
崔仁杰,2017.变频器在煤矿通风机节能监控系统中应用研究[J].煤炭与化工,(12):86-93.
葛启发,于润沧,朱维根,等,2017a.按需通风技术在某矿山工程设计中的应用[J].中国有色冶金,(6):58-63.
葛启发,朱维根,朱瑞军,等,2017b.深井难采矿体开采与通风控制技术研究[J].有色金属工程,7(6):86-89,99.
贡锁国,洪候山,黄欣,等,2002.多级机站通风计算机集中监控系统[J].金属矿山,(4):49-52.
郭怡,吴素珍,吕文娟,2007.变频器在风机运行中的节能分析[J].郑州经济管理干部学院学报,(9):90-92.
韩靖,丁长栋,蒋曙光,等,2016.变频调风时通风系统风量可靠性评价数学模型[J].中国安全生产科学技术,(3):143-148.
贾安民,2012.井下多级机站通风监控与节能技术研究[J].金属矿山,(6):113-119.
琚和森,黄寿元,2013.冬瓜山铜矿大团山采区通风系统优化改造[J].现代矿业,(7):98-100.
刘杰,谢贤平,2010.多风机多级机站通风节能原理初探[J].金属矿山,(5):71-74.
刘杰峰,2013.变频技术在矿井通风系统中的节能分析[J].江西煤炭科技,(2):134-135.
聂文艳,金林,王仲根,2006.变频技术和模糊控制在局部通风机中的应用[J].煤矿机械,(8):147-149.
潘军义,张涛,蔡顺朔,等,2002.梅山铁矿二期通风系统的建设和经验[J].金属矿山,(11):53-55.
孙林,郭亮,2005.基于变频调速技术的计算机矿井压风系统[J].矿业工程,(6):55-56.
王剑波,周伟,吴冷峻,等,2015.远程集中控制技术在调节通风系统风压平衡中的应用[J].金属矿山,(4):282-286.
王天涛,2010.变频技术及其在矿井主扇中的应用[J].煤,19(3):43-45.
王晓东,2018.现代矿井智能通风系统分析[J].能源与节能,(10):175-176.
伍海亮,王鹏,潘军义,等,2014.金属矿山井下VOD 智能通风技术研究[J].金属矿山,(6):123-127.
徐瑞龙,施圣荣,1985.矿井按需分风的优化方法——通路法[J].阜新矿业学院学报,4(2):61-69.
杨杰,赵连刚,全芳,2015.煤矿通风系统现状及智能通风系统设计[J].工矿自动化,41(11):74-77.
袁梅芳,2013.LOGO分时段变频控制井下主风机转速及输出风量[J].金属矿山,(8):138-140.
张卅卅,任高峰,张聪瑞,等,2015.深部开采矿井通风智能感知及风机远程集中安全监控系统[J].武汉理工大学学报,37(1):104-108.
[1] 钟德云, 刘雨龙, 王李管. 矿山多级机站通风系统风机优化选型方法[J]. 黄金科学技术, 2024, 32(4): 666-674.
[2] 邵良杉,闻爽爽. 基于GRU神经网络的巷道平均风速获取研究[J]. 黄金科学技术, 2021, 29(5): 709-718.
[3] 朱旭东,鲁忠良. 焦家寨煤矿通风系统阻力测定与分析[J]. 黄金科学技术, 2018, 26(5): 629-634.
[4] 李刚,吴超. 抱伦金矿通风系统优化研究[J]. 黄金科学技术, 2016, 24(1): 92-96.
[5] 袁风传,王楠. 山东石城矿区通风系统的建立及其应用效果[J]. J4, 2011, 19(2): 81-82.
[6] 王波 ,陈宝智 ,陈喜山 ,董金魁. 排风侧分区多级机站通风系统的应用实践[J]. J4, 2008, 16(4): 62-65.
[7] 许向东, 段拾山. 鸡冠嘴矿区通风系统技术改造可行性研究[J]. J4, 2005, 13(1-2): 91-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!