黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 14-24.doi: 10.11872/j.issn.1005-2518.2021.01.216
Lin BI1,2(),Chao ZHOU1,2(),Xin YAO1,2
摘要:
目前许多矿山对于矿卡司机的不安全行为监督仍依赖于人为监管,无法及时准确地发现问题,利用计算机技术识别不安全行为是替代人工检测的一条高效途径。本文利用深度学习来解决视频序列的矿卡司机不安全行为识别,深度学习方法不依赖人工设计特征,而是自适应地学习更好的高维特征,具有稳健性更好、速度更快及准确率更高的优点。首先,对帧图像采用翻转、旋转和添加噪点等方法进行数据增强,以降低样本的不均衡性;其次,利用本文优化的模型训练数据。结果表明:网络测试准确率达到93.445%,相比原始双流网络模型提高了15%。将本文模型与不考虑时序动态信息的深度学习模型进行试验比较,证明了时域特征信息对于行为识别的重要性。综上,本文提出的网络模型对于矿卡司机不安全行为的识别率较高,对矿卡司机不安全行为的识别及采矿生产作业安全具有重要实践意义。
中图分类号:
Cai Qiang,Deng Yibiao,Li Haisheng,al et,2020.Review of human behavior recognition methods based on deep learning[J].Computer Science,47(4):85-93. | |
Dalal N,Triggs B,2005.Histograms of oriented gradients for human detection[C]//2005 IEEE Conference on Computer Vision and Pattern Recognition(CVPR),San Diego,CA,USA. Boston:IEEE. 1:886-893. | |
Dalal N,Triggs B,Schmid C,2006.Human detection using oriented histograms of flow and appearance[C]//European Conferences on Computer Vision.Heidelberg:Springer:428-441. | |
Gao J,Liu J,Han J,2019.A study for real-time identification of unsafe behavior of taking off safety helmet based on VSM model[C]// Proceedings of the 11th International Conference on Computer Modeling and Simulation.New York:Association for Computing Machinery. | |
Hacefendiolu K,Baaa H B,Demir G,2021.Automatic detection of earthquake-induced ground failure effects through Faster R-CNN deep learning-based object detection using satellite images[J].Natural Hazards,105:383-403. | |
Huang Youwen,Wan Chaolun,Feng Heng,2019.Multi-feature fusion human behavior recognition algorithm based on convolutional neural network and long-short-term memory neural network[J].Progress in Laser and Optoelectronics,56(7):243-249. | |
Ji S,Xu W,Yang M,al et,2013.3D convolutional neural networks for human action recognition[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,35(1):221-231. | |
Klaser A,Marszalek M,Cordelia S,2008.A spatio-temporal descriptor based on 3D-gradients[C]//British Machine Vision Conference, Aberystwyth, UK. Guildford:BMVC. | |
Laptev I,Marszalek M,Schmid C,al et,2008.Learning realistic human actions from movies[C]//2008 IEEE Conference on Computer Vision and Pattern Recognition.Boston:IEEE:1-8. | |
Li K,Zou C,Bu S,al et,2018.Multi-modal feature fusion for geographic image annotation[J].Pattern Recognition,73: 1-14. | |
Mao Zhiqiang,Ma Cuihong,Cui Jinlong et al,2019.Research on behavior recognition based on two-stream convolution and two-center loss[J].Microelectronics and Computer,36(3):96-100. | |
Mazda T,Kajita Y,Akedo T,al et,2020.Recognition of nonlinear hysteretic behavior by neural network using deep learning[J].IOP Conference Series Materials Science and Engineering,809:012010. | |
Yue-Hei Ng J,Hausknecht M,Vijayanarasimhan S,al et,2015.Beyond short snippets:Deep networks for video classification[C]//2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Boston:IEEE,4694-4702. | |
Simonyan K,Zisserman A,2014.Two-stream convolutional networks for action recognition in videos[J].Advances in Neural Information Processing Systems. | |
Sun Y,Fu J,Ma Q,al et,2020.Research on wear recognition of electric worker’s helmet based on neural network[J].Journal of Physics:Conference Series,1449(1):012057. | |
Tran D,Bourdev L,Fergus R,al et,2015.Learning spatio temporal features with 3D convolutional networks [C]//Proceedings of the IEEE International Conference on Computer Vision. Boston:IEEE:4489-4497. | |
Wang H,Kläser A,Schmid C,al et,2011.Action recognition by dense trajectories[C]//2011 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Boston:IEEE:3169-3176. | |
Wang H,Schmid C,2013.Action recognition with improved trajectories[C]//IEEE International Conference on Computer Vision(ICCV).Boston:IEEE:3551-3558. | |
Wang L,Xiong Y,Wang Z,al et,2016.Temporal segment networks:Towards good practices for deep action recognition[C]//European Conference on Computer Vision.Cham:Springer:20-36. | |
Wang Yi,Ma Cuihong,Mao Zhiqiang,2020.Behavior recognition based on space-time dual-stream fusion network and attention model[J].Computer Applications and Software,37(8):156-159,193. | |
蔡强,邓毅彪,李海生,等,2020.基于深度学习的人体行为识别方法综述[J].计算机科学,47(4):85-93. | |
黄友文,万超伦,冯恒,2019.基于卷积神经网络与长短期记忆神经网络的多特征融合人体行为识别算法[J].激光与光电子学进展,56(7):243-249. | |
毛志强,马翠红,崔金龙,等,2019.基于双流卷积与双中心loss的行为识别研究[J].微电子学与计算机,36(3):96-100. | |
王毅,马翠红,毛志强,2020.基于时空双流融合网络与Attention模型的行为识别[J].计算机应用与软件,37(8):156-159,193. |
[1] | 阮顺领,阮炎康,卢才武,顾清华. 基于红外图像的矿石传送带托辊异常检测[J]. 黄金科学技术, 2023, 31(1): 123-132. |
[2] | 毕林,李亚龙,郭昭宏. 基于深度卷积神经网络的卡车装载矿石量估计研究[J]. 黄金科学技术, 2019, 27(1): 112-120. |
[3] | 毕林,谢伟,崔君. 基于卷积神经网络的矿工安全帽佩戴识别研究[J]. 黄金科学技术, 2017, 25(4): 73-80. |
|