img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (1): 99-107.doi: 10.11872/j.issn.1005-2518.2021.01.116

• 采选技术与矿山管理 • 上一篇    下一篇

基于幂律规则的滨海矿山巷道涌水混合比分析

段学良1,2,3(),马凤山1,2(),郭捷1,2,惠鑫4,顾鸿宇5,王善飞6   

  1. 1.中国科学院地质与地球物理研究所,中国科学院页岩气与地质工程重点实验室,北京 100029
    2.中国科学院地球科学研究院,北京 100029
    3.中国科学院大学,北京 100049
    4.北京市基础设施投资有限公司,北京 100101
    5.中国地质调查局成都地质调查中心,四川 成都 610081
    6.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442
  • 收稿日期:2020-06-30 修回日期:2020-07-20 出版日期:2021-02-28 发布日期:2021-03-22
  • 通讯作者: 马凤山 E-mail:13051876966@163.com;fsma@mail.iggcas.ac.cn
  • 作者简介:段学良(1994-),男,河北泊头人,博士研究生,从事矿山水文地质与工程地质研究工作。13051876966@163.com
  • 基金资助:
    国家自然科学基金重点项目“海底采矿对地质环境的胁迫影响与致灾机理”(41831293);国家自然科学基金青年项目“基于‘盲源分离’的矿山突水水源识别与混合比研究”(41907174);国家重点研发计划专题“黄渤海不同类型海岸带海水入侵发生机理研究”(2016YFC0402802-01)

Analysis of Mine Water Mixing Ratio in a Coastal Deposit Based on Power Law

Xueliang DUAN1,2,3(),Fengshan MA1,2(),Jie GUO1,2,Xin HUI4,Hongyu GU5,Shanfei WANG6   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
    2.Innovation Academy for Earth Science,Chinese Academy of Sciences,Beijing 100029,China
    3.University of Chinese Academy of Sciences,Beijing 100049,China
    4.Beijing Infrastructure Investment Co. ,Ltd. ,Beijing 100101,China
    5.Chengdu Center,China Geological Survey,Chengdu 610081,Sichuan,China
    6.Sanshandao Gold Mine,Shandong Gold Mining(Laizhou)Company Limited,Laizhou 261442,Shandong,China
  • Received:2020-06-30 Revised:2020-07-20 Online:2021-02-28 Published:2021-03-22
  • Contact: Fengshan MA E-mail:13051876966@163.com;fsma@mail.iggcas.ac.cn

摘要:

滨海采矿引起的突涌水灾害对矿山的安全生产构成了极大威胁,计算巷道涌水的混合比,进一步分析其演化规律对于突涌水事故的防治具有重要意义。将幂律规则应用于三山岛金矿巷道涌水混合比数据的统计分析中,根据2个已有的混合比研究结果,采用概率密度函数pS)对相邻2个监测周期的海水比例波动事件进行了拟合,拟合的相关系数分别达到0.92和0.93,说明海水比例波动值区间间隔的均值与概率密度的分布符合幂律分布。因此,采用幂律规则对研究区的涌水混合比进行统计分析是可信的。研究结果表明:不同方法得出的混合比,在幂律规则下反映出的规律是相同的;海水比例波动值大于48%的概率小于5%,因此将48%视为预警区间的临界值;F3断层附近的涌水点相对其他监测点海水比值波动较大,这是由于F3为导水断层且连通了海水,受采动的影响,F3断层周围的导水通道错综复杂且不稳定。

关键词: 滨海采矿, 突涌水灾害, 混合比, 演化规律, 统计分析, 幂律规则

Abstract:

The study area,Sanshandao gold mine,is the first coastal mine in China.It belongs to structural fissure water-filled mine,and the hydrogeological conditions are complicated.With the mining of the orebody,multiple water inrush accidents occurred in the shallow and deep parts of the mine,causing the partial roadway to be flooded,and even some sections were accompanied by sand erosion.Water inrush caused by coastal mining is an extreme threat to the safe production of the mine.Therefore,it is important to determine the mine water mixing ratios and analyze its evolutionary law for the prevention of water inrush accidents.The power-law rule is a general law shown in the occurrence of geological disasters in nature.It refers to the relationship between the frequency and the scale of disasters.The frequency of large-scale disasters is low.Conversely,disasters with a high frequency of occurrence are relatively small in scale.To determine the measure of the proportion of seawater,the power-law rule was applied to the statistical analysis of the mixing ratios of the mine water in this study area.Firstly,the results of two existing mixing ratio studies were statistically sorted out,and the probability density statistical results of seawater fluctuation events were obtained.Then,the probability density function pS) was used to fit the fluctuation events of the seawater ratio in two adjacent monitoring periods.Finally,by integrating the fitted curve,the early warning interval of seawater fluctuation value was obtained.The research results show that the correlation coefficients of the fitting reach 0.92 and 0.93,respectively.It indicates that the distribution of the interval mean value and probability density of seawater proportional fluctuation events conformed to the power-law distribution.Thus,it is credible to use the power-law rule to analyze the mixing ratio of the mine water in the study area.For the mixing ratios obtained by different methods,the law reflected under the power law rule is the same.The fluctuation values of the seawater ratio at most monitoring sites are not large,less than 30%.It shows that the power-law rule is not affected by the calculation method of mixing ratio.Because the selected analysis index is the seawater fluctuation value,that is,for the relative value of two monitoring periods,the errors caused by different methods are eliminated.The probability that the fluctuation value of seawater ratio is greater than 48% is less than 5%,so 48% is regarded as the critical value of the warning interval.When the seawater fluctuation value is greater than this value,it should be paid attention to,and combined with the water temperature,flow rate,and other indicators of the water site for further analysis.Water samples near the F3 fault have larger fluctuation values of seawater than that of other water samples because F3 connects the seawater,and due to mining,the water channels around F3 are complicated and unstable.

Key words: coastal mining, water inrush, mixing ratio, evolution law, statistical analysis, power law

中图分类号: 

  • P642

图1

研究区构造及涌水点位置分布图"

表1

涌水样混合比计算结果(Duan et al.,2019)"

样品编号海水卤水淡水样品编号海水卤水淡水样品编号海水卤水淡水
105-1a0.520.210.26375-7'f0.810.070.12555-5b0.530.390.08
105-1b0.640.080.28375-8a0.620.200.18555-5c0.610.280.11
150-1a0.160.290.54375-8b0.560.310.14555-6a0.470.420.11
150-1b0.300.190.51375-8'e0.800.140.05555-6b0.580.360.05
150-1c0.230.220.55375-8'f0.770.090.14555-7b0.830.050.12
150-1d0.350.290.35375-9e0.800.140.07600-1a0.450.430.12
195-1a0.570.160.28375-9f0.830.070.10600-1b0.540.340.12
195-1b0.620.150.24375-10f0.630.210.16600-1c0.610.300.09
195-1c0.520.190.29375-11f0.480.500.02600-1d0.560.240.20
195-1d0.520.200.29375-12f0.450.490.06600-1e0.450.410.14
240-1a0.620.280.10375-13f0.310.630.06600-2a0.500.390.11
240-2a0.700.180.12420-1a0.620.190.19600-2b0.630.310.06
240-3a0.340.580.08420-1c0.660.220.13600-2c0.600.320.08
240-4a0.720.160.12420-2a0.530.330.14600-2d0.600.200.20
240-5a0.600.100.31465-1a0.540.340.12600-3a0.380.540.08
285-1a0.350.420.24465-1b0.480.350.17600-3b0.500.440.07
285-1b0.580.270.15465-1c0.380.430.20600-3c0.560.370.07
285-1c0.570.290.15465-2a0.360.410.23600-4b0.620.300.07
285-1d0.380.350.28465-2c0.410.370.22600-4c0.560.390.05
285-2a0.610.170.21510-1a0.740.160.10600-5b0.450.460.09
285-2b0.750.110.15510-1b0.820.050.13600-5c0.530.350.12
285-2d0.450.330.22510-1c0.710.180.11600-5d0.350.460.19
285-3a0.000.540.46510-2a0.790.100.11600-6c0.670.220.10
285-3b0.000.500.50510-2b0.870.030.10600-6d0.120.620.26
285-3c0.000.510.49510-2c0.730.100.17600-6e0.790.110.11
285-3d0.000.580.42510-3a0.720.140.14600-7c0.610.310.07
320-7e0.110.870.03510-3b0.740.120.14600-8c0.560.390.05
320-8e0.240.760.00510-4a0.700.160.14600-8d0.570.270.16
320-9e0.390.610.00510-4b0.800.070.13600-9c0.580.370.05
330-1a0.550.310.14510-5a0.710.130.16600-9d0.550.370.08
330-1b0.540.330.13510-6a0.720.100.18600-10d0.710.110.18
330-2a0.590.170.24510-6b0.800.070.13600-11e0.000.810.19
375-1a0.670.210.12510-7a0.400.480.12600-12e0.310.540.15
375-1b0.680.170.15510-8c0.760.070.16600-13e0.610.280.10
375-1c0.640.210.15510-9d0.640.130.23600-14e0.690.170.13
375-1e0.750.140.11510-10d0.610.150.24600-15e0.820.070.11
375-2a0.700.200.11510-11f0.320.630.05600-16e0.780.070.15
375-3a0.780.100.13510-12f0.600.290.11600-17e0.760.070.17
375-3b0.780.080.14510-13f0.640.280.09600-17f0.530.250.22
375-3d0.590.190.22510-15f0.620.280.10600-18e0.810.040.14
375-4a0.750.110.14510-16f0.540.350.11600-18f0.710.110.18
375-4b0.710.120.17510-16kf0.710.210.08600-19e0.820.030.14
375-4c0.690.180.13555-1a0.720.110.18600-20f0.620.230.15
375-4d0.550.240.21555-1c0.710.150.15600-21f0.470.320.21
375-4e0.710.170.12555-1d0.220.470.31600-22f0.770.080.15
375-5a0.470.340.19555-2a0.720.120.16600-23f0.790.060.14
375-5b0.520.300.18555-3a0.670.140.19645-1f0.580.320.10
375-5c0.450.340.21555-3b0.670.170.16645-2f0.380.390.23
375-5d0.350.390.27555-3c0.420.390.19645-3f0.540.340.12
375-5e0.570.280.15555-3d0.400.350.25645-4f0.490.400.11
375-6a0.510.350.14555-4a0.670.180.14690-1f0.550.350.10
375-6b0.470.370.16555-4b0.800.090.11690-10f0.490.270.24
375-6'f0.780.080.13555-4c0.760.110.13690-2c0.590.380.03
375-7a0.490.330.18555-4d0.680.120.20690-2f0.630.260.10
375-7'e0.790.100.11555-5a0.680.180.14690-12f0.670.240.09

表2

研究1中海水波动事件的概率密度统计结果"

统计区间区间均值事件个数累计个数发生频率概率密度
[0,10)545450.6250.063
[10,20)1519640.2640.026
[20,30)255690.0690.007
[30,40)352710.0280.003
[40,50)451720.0140.001

表3

研究2中海水波动事件的概率密度统计结果"

统计区间区间均值事件个数累计个数发生频率概率密度
[0,10)546460.6130.061
[10,20)1522680.2930.029
[20,30)254720.0530.005
[40,50)451730.0130.001
[50,60)551740.0130.001
[60,70)651750.0130.001

图2

海水波动事件的概率密度—间隔均值分布曲线"

Bak P,Tang C,1989.Earthquakes as a self-organized critical phenomenon[J].Journal of Geophysical Research,94(B11):15635-15637.
Bak P,Tang C,Wiesenfeld K,1987.Self-organized criticality:An explanation of 1/f noise[J].Physical Review Letters,59(4):381-384.
Carlson J M,Langer J S,1989.Mechanical model of an earthquake fault[J].Physical Review A,40:6470-6483.
Chung J S,1996.Deep-ocean mining:Technologies for manganese nodules and crusts[J].International Journal of Offshore Polar Engineering,6(4):244-254.
Commeau R F,Clark A,Johnson C,al et,1984.Ferromanganese crust resources in the Pacific and Atlantic Oceans[C]//Proceedings of the Oceans Conference (IEEE).New York:IEEE.
Duan X L,Ma F S,Guo J,al et,2019.Source identification and quantification of seepage water in a coastal mine,in China[J].Water,11(9):1862.
Dussauge C,Grasso J R,Helmstetter A,2003.Statistical analysis of rockfall volume distributions: Implications for rockfall dynamics[J].Journal of Geophysical Research Solid Earth,108(B6):1-11.
Gao Song,Zhang Junjin,Sun Shanshan,al et,2016.Hydrogeological characteristics of gold deposit in north sea area of Sanshandao[J].Gold Science and Technology,24(1):11-16.
Gu H Y,Ma F S,Guo J,al et,2017.Hydrochemistry,multidimensional statistics,and rock mechanics investigations for Sanshandao gold mine,China[J].Arabian Journal of Geosciences,10(3):62.
Gu H Y,Ma F S,Guo J,al et,2018.Assessment of water sources and mixing of groundwater in a coastal mine:The Sanshandao gold mine,China[J].Mine Water and the Environment,37:351-365.
Guo J,Zhao H J,Ma F S,al et,2015.Investigating the permeability of fractured rock masses and the origin of water in a mine tunnel in Shandong Province,China[J].Water Science and Technology,72(11):2006-2017.
Guzzetti F,Malamud B D,Turcotte D L,al et,2002.Power-law correlations of landslide areas in central Italy[J].Earth and Planetary Science Letters,195(3/4):169-183.
Hui X,Ma F S,Guo J,al et,2018.Power-law correlations of mine subsidence at a metal mine in China[J].Environmental Geotechnics:1-12.doi:10.1680/jenge.18.00039.
doi: 10.1680/jenge.18.00039
Hui X,Ma F S,Zhao H J,al et,2019.Monitoring and statistical analysis of mine subsidence at three metal mines in China[J].Bulletin of Engineering Geology & the Environment,78(6):3983-4001.
Hurst M D,Ellis M A,Royse K R,al et,2013.Controls on the magnitude-frequency scaling of an inventory of secular landslides[J].Earth Surface Dynamics,1(1):67-78.
Ito K,Tsuzaki M,1990.Earthquakes as self-organized critical phenomena[J].Journal of Geophysical Research,95(B5):6853.
Liu Yushan,Wu Bihao,2005.Exploitation of marine mineral resources:Review and prospects[J].Mineral Deposits,24(1):81-84.
Ma F S,Zhao H J,Guo J,2015.Investigating the characteristics of mine water in a subsea mine using groundwater geochemistry and stable isotopes[J].Environmental Earth Sciences,74(9):6703-6715.
Nakanishi H,1990.Cellular-automaton model of earthquakes with deterministic dynamics[J].Physical Review A,41(12):7086-7089.
Peng K,Li X B,Wang Z W,2015.Hydrochemical characteristics of groundwater movement and evolution in the Xinli deposit of the Sanshandao gold mine using FCM and PCA methods[J].Environmental Earth Sciences,73(12):7873-7888.
Qiu Haijun,Cao Mingming,Liu Wen,2013.Power-law correlations of landslides:A case of Ningqiang County[J].Geolo-gical Science and Technology Information,32(3):183-187.
Rona P A,2003.Resources of the sea floor[J].Science,299(5607):673-674.
Teixeira S B,2006.Slope mass movements on rocky sea-cliffs:A powerlaw distributed natural hazard on the Barlavento Coast,Algarve,Portugal[J].Continental Shelf Research,26(9):1077-1091.
Wang Shanfei,2001.Analysis of hydrogeology for deep mining in Sanshandao gold mine[J].Nonferrous Mines,30(3):9-12.
Xu Qiang,Huang Runqiu,1997.Power law between volume and frequency of geological hazards[J].Journal of Chengdu University of Technology,24(Supp.1):93-98.
Ye Bailong,Peng Ensheng,1994.Study on the conducting-water structure model in the Sanshandao gold deposit[J].Journal of Central South Universtiy(Science and Technology),25(2):146-150.
Zhang Shouquan,Huang Wei,1994.Hydrogeological and engineering features of F3 fracture zone in Sanshan Island gold mine district and prevention of hazards [J].Journal of Engineering Geology,2(1):62-72.
高松,张军进,孙珊珊,等,2016.三山岛北部海域金矿区水文地质特征分析[J].黄金科学技术,24(1):11-16.
刘玉山,吴必豪,2005.海底金属矿产资源的开发——回顾与未来展望[J].矿床地质,24(1):81-84.
邱海军,曹明明,刘闻,2013.地质灾害的幂律相依性:以宁强县为例[J].地质科技情报,32(3):183-187.
王善飞,2001.三山岛金矿深部开采水文地质浅析[J].有色矿山,30(3):9-12.
许强,黄润秋,1997.地质灾害发生频率的幂律规则[J].成都理工学院学报,24(增1):93-98.
叶柏龙,彭恩生,1994.三山岛金矿导水构造模式研究[J].中南大学学报(自然科学版),25(2):146-150.
张寿全,黄巍,1994.三山岛金矿F3断裂带的水文地质工程地质特征及灾害防治[J].工程地质学报,2(1):62-72.
[1] 鞠培姣. 太行山北段梨园金矿构造地球化学特征[J]. 黄金科学技术, 2021, 29(1): 64-73.
[2] 崔宇,李夕兵,董陇军,白吕. 玲珑金矿微震监测台网布设优化[J]. 黄金科学技术, 2019, 27(3): 417-424.
[3] 段学良,马凤山,赵海军,郭捷,顾鸿宇,刘帅奇. 滨海矿山矿坑涌水源识别与混合比研究[J]. 黄金科学技术, 2019, 27(3): 406-416.
[4] 殷大发,孟祥瑞,殷大澍. 矿井采掘计划及智能决策支持系统[J]. J4, 2004, 12(6): 38-42.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!