img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 334-344.doi: 10.11872/j.issn.1005-2518.2021.03.180

• 矿产勘查与资源评价 • 上一篇    下一篇

云南中甸地区斑岩铜矿床的保存与夷平面关系探讨——基于地貌因子分析

张静静1,2(),冷成彪1()   

  1. 1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013
    2.东华理工大学地球科学学院,江西 南昌 330013
  • 收稿日期:2020-10-10 修回日期:2021-04-26 出版日期:2021-06-30 发布日期:2021-07-14
  • 通讯作者: 冷成彪 E-mail:Jingjingz1515@163.com;lcb8207@163.com
  • 作者简介:张静静(1993-),女,安徽阜阳人,硕士研究生,从事斑岩矿床与地貌学研究工作。Jingjingz1515@163.com
  • 基金资助:
    国家自然科学基金项目“斑岩型矿床”(42022021);“滇西北中甸岛弧印支期斑岩铜矿床的保存与剥蚀程度研究:低温年代学制约”(41373051)

Discussion on the Relationships Between Planation Surface and Preservation of Porphyry Copper Deposits in the Zhongdian Region,Yunnan Province,SW China:Constraints from Geomorphic Factor Analysis

Jingjing ZHANG1,2(),Chengbiao LENG1()   

  1. 1.State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi,China
    2.College of Earth Science,East China University of Technology,Nanchang 330013,Jiangxi,China
  • Received:2020-10-10 Revised:2021-04-26 Online:2021-06-30 Published:2021-07-14
  • Contact: Chengbiao LENG E-mail:Jingjingz1515@163.com;lcb8207@163.com

摘要:

夷平面具有形成时间跨度大、分布范围广的特征,是地貌学研究的基本内容。为了探讨斑岩铜矿床成矿后的保存与夷平面的关系,基于GIS技术,利用DEM数据提取了中甸地区高程、坡度及条带剖面等地貌因子,明确了中甸夷平面的高程及其分布范围。通过对该区典型成矿斑岩体(如雪鸡坪岩体)进行热史反演模拟,重建了中甸地区斑岩体的冷却和剥蚀历史。结果表明:中甸地区分布有两级夷平面,其坡度集中在0°~10°之间,并显示出高海拔(+4 100~+4 400 m、+3 100~+3 300 m)、低地势的特征;雪鸡坪岩体在早白垩世至晚中新世时期经历了长期缓慢的冷却(<1 ℃/Ma)和极低的剥蚀量(500~950 m),暗示该区夷平面的形成不晚于晚白垩世。结合前人研究,认为中甸地区广泛分布的夷平面为斑岩矿床的保存提供了有利的古地貌条件。同时,斑岩矿床的冷却历史也刻画了夷平面的形成过程,二者具有一定的耦合关系。

关键词: 斑岩铜矿床, 夷平面, GIS, DEM, 低温热年代学, 中甸地区

Abstract:

The planation surface formation and its distribution have the characteristics of long-time span and wide distribution range, which is the basic content of geomorphology research.In order to discuss the relationship between the preservation of porphyry copper deposits after mineralization and the planation surface, based on geographic information system(GIS)platform,the paper extracted various geomorphic factors,such as the elevation,the slope and swath profile from digital elevation model(DEM)data,and then the elevation and distribution range of the planation surface were defined in the Zhongdian region.The Zhongdian region is located at the southeastern Tibetan Plateau.In this paper,DEM data from National Aeronautics and Space Administration(NASA) were used to calculate the slope value of 0°~61° in Zhongdian region by GIS technology platform,and the areas with low slope value(0°~10°)were reclassified.Meanwhile,the profile elevation of the Zhongdian region is accurately depicted by using the strip profile,and then the elevation values of the planation surface (+4 100~+4 400 m and +3 100~+3 300 m) and the topographic relief were visually displayed,indicating the distribution height of the planation surface in Zhongdian region.In this study,the thermal history of the typical porphyry(such as Xuejiping complex)was simulated,and the cooling and denudation history of the complex were reconstructed,and the cooling curve were obtained.The results show that the slope distribution in Zhongdian region was concentrated in two planation surfaces between 0° and 10°,revealing the characteristics of the high elevation and low topography.The Xuejiping complex experienced a prolonged slow cooling from the Upper Cretaceous to Late Miocene(<1 ℃/Ma),and the denudation extremely low(500~950 m),reflecting the tectonic quiet period.The process suggests that the planation surface was formed earlier than Late Cretaceous and finally in the Miocene.Combined with the former research results,the widely distributed planation surface in Zhongdian area provides favorable paleogeomorphologic conditions for the preservation of Late Triassic porphyry deposits.As the same time,the cooling history of porphyry deposits also describes the formation process of planation surface,and there is a certain coupling relationship.The existence of planation surface in Zhongdian region not only directly provides geomorphological evidence of surface uplift,but also further supports the stepwise uplift geodynamic model of the southeastern Tibetan Plateau.

Key words: porphyry copper deposits, planation surface, GIS, DEM, low-temperature thermochronology, Zhongdian region

中图分类号: 

  • P618.41

图1

中甸地区位置及高程图(a)中甸地区在青藏高原的位置;(b)中甸地区高程图1.本文样品点;2.文献Leng et al.(2018)的样品点;3.走滑断裂;4.河流"

图2

中甸地区条带剖面位置分布图"

图3

中甸地区坡度分布图"

图4

中甸地区条带剖面图"

图5

中甸地区夷平面分布图[据Clark et al.(2006)修改]"

图6

中甸地区现代地貌特征(a)中甸地区卫星影像图[蓝色线条为分图(b)、(c)的边界线];(b)雪鸡坪、普朗矿床卫星影像图;(c)雪鸡坪、普朗矿床DEM高程图"

表1

中甸地区斑岩矿床位置和测年结果汇总"

样品编号采样位置海拔/m锆石U-Pb/Ma锆石(U-Th)/He/Ma磷灰石(U-Th)/He/Ma
XJP11-2999.85° E,28.00° N3 556214±2.5128.3±13.323.1±1.2
XZK3301-6899.85° E,28.00° N3 592215.6±1.556.2±4.6
XZK3301-53099.85° E,28.00° N3 130214.2±1.4142.0±7.620.8±1.5
PL12-34*99.98° E,28.03° N3 950217.0±1.3146.1±9.262.5±5.8

图7

雪鸡坪岩体的时间—温度曲线注:图中的绿色区域表示所有可接受的时间—温度曲线,其拟合度大于0.05;紫色区域包含所有“好”的时间—温度曲线,其拟合度大于0.6;紫色区域中黑色的粗线表示每个区域的加权平均冷却曲线"

Bi Huaxing,Tan Xiuying,Li Xiaoyin,2005.Digital terrain analysis based on DEM[J].Journal of Beijing Forestry University,27(2):49-53.
Braxton D P,Cooke D R,Dunlap J,al et,2012.From crucible to graben in 2.3 Ma:A high-resolution geochronological study of porphyry life cycles,Boyongan-Bayugo copper-gold deposits,Philippines[J].Geology,40(5):471-474.
Burrough P A,Mcdonell R A,1998.Principles of Geographical Information Systems[M].New York:Oxford University Press:17-34.
Cao K,Wang G,Leloup P H,al et,2019.Oligocene-Early Miocene topographic relief generation of southeastern Tibet Triggered by thrusting[J].Tectonics,38(1):374-391.
Cheng Jie,Liu Xueqing,Gao Zhenji,al et,2001.Effect of the Tibetan Plateau uplifting on geological environment of the Yunnan Plateau[J].Geoscience,15(3):290-296.
Clark M K,Bush J W M,Royden L H,2005.Dynamic topography produced by lower crustal flow against rheological strength heterogeneities bordering the Tibetan Plateau[J].Geophysical Journal International,162(2):575-590.
Clark M K,Royden L H,Whipple K X,al et,2006.Use of a regional,relict landscape to measure vertical deformation of the eastern Tibetan Plateau[J].Journal of Geophysical Research:Earth Surface,111:1-23.
Clark M K,Schoenbohm L M,Royden L H,al et,2004.Surface uplift,tectonics,and erosion of eastern Tibet from large-scale drainage patterns[J].Tectonics,23(1):1-20.
Cui Zhijiu,Li Dewen,Liu Gengnian,al et,2001.Characteristics of red karst weathering crust and formation environment of planation surface in Hunan,Guangxi,Guizhou,Yunnan and Tibet[J].Science in China (Series D),31(Supp.):134-141.
Feng Jinliang,Cui Zhijiu,Zhu Liping,al et,2005.Review of planation studies[J].Mountain Research,23(1):1-13.
Haider V L,Kropáček J,Dunkl I,al et,2015.Identification of peneplains by multi-parameter assessment of digital elevation models[J].Earth Surface Processes and Landforms,40(11):1477-1492.
He Haosheng,1985.The characteristics of neotectonic movement in Jianchuan Basin Yunnan and the uplift of Yunnan Plateau[J].Collection of Geology of Qinghai-Tibet Plateau,17:105-117.
He Haosheng,1993.The planation surface deformation and its reflection of the Quaternary tectonic movement in western Yunnan [J].Geoscience,7(1):31-39.
Hetzel R,Dunkl I,Haider V,al et,2011.Peneplain formation in southern Tibet predates the India-Asia collision and plateau uplift[J].Geology,39(10):983-986.
Japsen P,Bonow J M,Green P F,al et,2009.Formation,uplift and dissection of planation surfaces at passive continental margins—A new approach[J].Earth Surface Processes and Landforms,34(5):683-699.
Ketcham R A,2005.Forward and inverse modeling of low-temperature thermochronometry data[J].Reviews in Mineralogy and Geochemistry,58(1):275-314.
Leng C B,Cooke D R,Hou Z Q,al et,2018.Quantifying exhumation at the giant Pulang porphyry Cu-Au deposit using U-Pb-He dating[J].Economic Geology,113(5):1077-1092.
Leng Chengbiao,Zhang Xingchun,Wang Xinsong,al et,2015.Mineralization of Indo-Chinese and Late Yanshanian porphyry in Zhongdian,Yunnan Province[J].Journal of Minerals,35(Supp.1):401.
Li Dewen,Cui Zhijiu,2004.Karst planation surface and the Qinghai-Xizang Plateau uplift[J].Quaternary Sciences,24(1):58-66.
Li Dewen,Cui Zhijiu,Liu Gengnian,2000.Feature and origin of convered karst on Hunan,Guangxi,Guizhou,Yunnan and Tibet[J].Journal of Mountain Science,18(4):289-295.
Li Jijun,2013.Uplifting of the Tibet Plateau and environmental changes in the Late Cenozoic[J].Journal of Lanzhou University,43(2):154-159.
Li Jijun,Fang Xiaomin,Pan baotian,al et,2001.Late cenozoic intensive uplift of Qinghai-Xizang Plateau and its impacts on environments in surrounding area[J].Quaternary Sciences,21(5):381-391.
Li Jijun,Wen Shixuan,Zhang Qingsong,al et,1979.A study on the age,amplitude and form of Qinghai-Tibet Plateau uplift[J].China Science,(6):608-616.
Li S,Currie B S,Rowley D B,al et,2015.Cenozoic paleoaltimetry of the SE margin of the Tibetan Plateau:Constraints on the tectonic evolution of the region[J].Earth and Planetary Science Letters,432:415-424.
Liu F,Gao H,Pan B,al et,2018.Quantitative analysis of planation surfaces of the upper Yangtze River in the Sichuan-Yunnan Region,Southwest China[J].Frontiers of Earth Science,13(1):55-74.
Liu Hongguang,Ma Weifeng,2010.Research on planation surface judgment method based on statistical analysis of geomorphic factors—A case study of the Three Gorges Area[C]// Proceedings of 2010 International Conference on Remote Sensing (ICRS 2010).Hangzhou:Intelligent Information Technology Application Society:32-35.
Liu Yong,Wang Yixiang,Pan Baotian,1999.A preliminary approach on the 3D presentation and quantitative analysis of planation surface[J].Georaphical Research,18(4):391-399.
Liu-Zeng J,Tapponnier P,Gaudemer Y,al et,2008.Quantifying landscape differences across the Tibetan Plateau:Implications for topographic relief evolution[J].Journal of Geophysical Research,113(F4)..
Liu-Zeng J,Zhang J,Ge Y,al et,2018.Tectonic geomorphology:An interdisciplinary study of the interaction among tectonic climatic and surface processes[J].Chinese Science Bulletin,63(30):3070-3088.
Luo Laixing,Yang Yichou,1963.Discussion on Geomorphology Formation in Western Sichuan and Northern Yunnan,The Geography(No.5)[M].Beijing:The Science Press.
Ma Jinping,2017.Quantitative Study Geomorphic Indices and Planation Surfaces of the Taohe Drainage System Based on DEM[D].Lanzhou:Lanzhou University.
Pan Baotian,Li Jijun,Li Bingyuan,2000.Discussion on evidence of surface uplift of the Qinghai-Tibet Plateau[J].Journal of Lanzhou University,36(3):100-111.
Reid A J,Fowler A P,Phillips D,al et,2005.Thermochronology of the Yidun Arc,central eastern Tibetan Plateau:Constraints from 40Ar/39Ar K-feldspar and apatite fission track data[J].Journal of Asian Earth Sciences,25(6):915-935.
Rui Zongyao,Zhang Lisheng,Chen Zhenyu,al et,2004.Approach on source rock or source region of porphyry copper deposits[J].Acta Petrologica Sinice,20(2):229-238.
Spicer R A,Su T,Valdes P J,al et,2020.Why “the uplift of the Tibetan Plateau” is a myth? [J].National Science Review,8(1). .
Tapponnier P,Xu Z Q,Roger F,al et,2001.Oblique stepwise rise and growth of the Tibet Plateau[J].Science,294(5547):1671-1677.
Tian Y T,Kohn B P,Gleadow A J W,al et,2013.Constructing the Longmen Shan eastern Tibetan Plateau margin:Insights from low-temperature thermochronology[J].Tectonics,32(3):576-592.
Tian Y T,Kohn B P,Gleadow A J W,al et,2014.A thermochronological perspective on the morphotectonic evolution of the southeastern Tibetan Plateau[J].Journal of Geophysical Research:Solid Earth,119(1):676-698.
Tian Y T,Kohn B P,Hu S,al et,2015.Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:Implications for crustal dynamics[J].Geophysical Research Letters,42(1):29-35.
Wu Fuyuan,Huang Baochun,Ye Kai,al et,2007.Collapsed Himalayan-Tibetan orogen and the rising Tibetan Plateau[J].Acta Petrological Sinica,24(1):1-30.
Xiong Jianguo,Li Youli,Zhang Peizhen,2020.New progress in planation surface research[J].Progress in Earth Science,35(4):378-388.
Xiong L Y,Tang G A,Zhu A X,al et,2016.A peak-cluster assessment method for the identification of upland planation surfaces[J].International Journal of Geographical Information Science,31(2):387-404.
Xu Shuying,1963.On the formation of planation plane,age and deformation[J].Journal of Lanzhou University,2(9):96-106.
Yanites B J,Kesler S E,2015.A climate signal in exhumation patterns revealed by porphyry copper deposits[J].Nature Geoscience,8(6):462-465.
Zhang Y Z,Replumaz A,Wang G C,al et,2015.Timing and rate of exhumation along the Litang fault system,implication for fault reorganization in Southeast Tibet[J].Tectonics,34(6):1219-1243.
Zhao J,Qin K,Li G,al et,2015.The exhumation history of collision-related mineralizing systems in Tibet:Insights from thermal studies of the Sharang and Yaguila deposits,central Lhasa[J].Ore Geology Reviews,65:1043-1061.
Zhong Dalai,Ding Lin,1996.Uplift process and mechanism of the Qinghai-Tibet Plateau[J].Science China,20(4):289-295.
Zou Binwen,Ma Weifeng,Long Yu,al et,2011.Extraction method of swath profile based on ArcGIS and its application in landform analysis[J].Geography and Geo-information Science,27(3):42-47.
毕华兴,谭秀英,李笑吟,2005.基于DEM的数字地形分析[J].北京林业大学学报,27(2):49-53.
程捷,刘学清,高振纪,等,2001.青藏高原隆升对云南高原环境的影响[J].现代地质,15(3):290-296.
崔之久,李德文,刘耕年,等,2001.湘桂黔滇藏红色岩溶风化壳的性质与夷平面的形成环境[J].中国科学(D辑),31(增):134-141.
冯金良,崔之久,朱立平,等,2005.夷平面研究评述[J].山地学报,23(1):1-13.
何浩生,1985.云南剑川盆地新构造运动特征与云南高原隆起问题[J].青藏高原地质文集,17:105-117.
何浩生,1993.滇西地区夷平面变形及其反映的第四纪构造运动[J].现代地质,7(1):31-39.
冷成彪,张兴春,王新松,等,2015.云南中甸地区印支期和燕山晚期斑岩成矿作用研究[J].矿物学报,35(增1):401.
李德文,崔之久,2004.岩溶夷平面演化与青藏高原隆升[J].第四纪研究,24(1):58-66.
李德文,崔之久,刘耕年,2000.湘桂黔滇藏一线覆盖型岩溶地貌特征与岩溶(双层)夷平面[J].山地学报,18(4):289-295.
李吉均,2013.青藏高原隆升与晚新生代环境变化[J].兰州大学学报,43(2):154-159.
李吉均,方小敏,潘保田,等,2001.新生代晚期青藏高原强烈隆起及其对周边环境的影响[J].第四纪研究,21(5):381-391.
李吉均,文世宣,张青松,等,1979.青藏高原隆起的时代、幅度和形式的探讨[J].中国科学,(6):608-616.
刘洪光,马维峰,2010.基于地貌因子统计分析的夷平面判断方法的研究——以三峡地区为例[C]//国际遥感会议(ICRS).杭州:智能信息技术应用学会:32-35.
刘勇,王义祥,潘保田,1999.夷平面的三维显示与定量分析方法初探[J].地理研究,18(4):391-399.
罗来兴,杨逸畴,1963.川西滇北地貌形成的探讨,地理集刊(第5号)[M].北京:科学出版社.
马金萍,2017,基于DEM的洮河流域水系地貌参数与夷平面定量化研究[D].兰州:兰州大学.
潘保田,李吉均,李炳元,2000.青藏高原地面抬升证据讨论[J].兰州大学学报,36(3):100-111.
芮宗瑶,张立生,陈振宇,等,2004.斑岩铜矿的源岩或源区探讨[J].岩石学报,20(2):229-238.
吴福元,黄宝春,叶凯,等,2007.青藏高原造山带的垮塌与高原隆升[J].岩石学报,24(1):1-30.
熊建国,李有利,张培震,2020.夷平面研究新进展[J].地球科学进展,35(4):378-388.
徐叔鹰,1963.论夷平面的成因、年龄与变形[J].兰州大学学报,2(9):96-106.
钟大赉,丁林,1996.青藏高原的隆起过程及其机制探讨[J].中国科学(D辑),20(4):289-295.
邹斌文,马维峰,龙昱,等,2011.基于ArcGIS的条带剖面提取方法在地貌分析中的应用[J].地理与地理信息科学,27(3):42-47.
[1] 谭吉玉,刘高常. 基于小波支持向量机模型的矿区生态安全评价方法研究[J]. 黄金科学技术, 2020, 28(6): 902-909.
[2] 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379.
[3] 陈超民,冷成彪,司国辉. 基于GIS与层次分析法的综合成矿预测——以新疆库米什地区为例[J]. 黄金科学技术, 2020, 28(2): 213-227.
[4] 王石,汤艺,冯萧. 基于改进PCA与有序多分类Logistic的充填管道磨损风险评估[J]. 黄金科学技术, 2019, 27(5): 740-746.
[5] 朱学礼,冯涛,柏瑞,宁霄峰,李肖,张子衿. “地质+”多元驱动智慧勘查初步应用[J]. 黄金科学技术, 2017, 25(1): 46-54.
[6] 李永生,孙焕英,夏国彬,卢倩. 区域地质图图例系统库调用方法与应用研究[J]. 黄金科学技术, 2015, 23(5): 83-87.
[7] 张玉杰,张文华,史晓翠,路彦明. MapGIS制图中随意参数底图的矢量校正[J]. 黄金科学技术, 2013, 21(4): 83-86.
[8] 彭桥梁,王伟,蒋惠俏,李天虎,王磊. 手持GPS与GPSMapGIS在1∶5万水系沉积物测量中的应用[J]. 黄金科学技术, 2012, 20(6): 90-93.
[9] 戎亚芳,王子启,刘甲军. 矿区地下管线探测及数据库建设方案[J]. J4, 2012, 20(4): 81-84.
[10] 彭桥梁,王伟,李天虎,罗小平. MapGIS数据批量导入手持GPS的方法[J]. J4, 2012, 20(3): 76-79.
[11] 李以科, 孙刚. 证据权模型在赣东北地区铜、金成矿预测中的应用[J]. J4, 2009, 17(6): 29-33.
[12] 李永生, 孙焕英, 白清, 尹忠, 黄辉. 槽探数字化地质编录数据模型与实现方法研究[J]. J4, 2009, 17(3): 20-24.
[13] 文超, 顾清华, 冯居易. 基于GIS的露天矿配矿管理系统研究[J]. J4, 2009, 17(2): 58-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!