img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 345-354.doi: 10.11872/j.issn.1005-2518.2021.03.189

• 矿产勘查与资源评价 • 上一篇    下一篇

基于钻孔数据的地质体隐式建模约束规则自动构造方法

王博(),贺康,钟德云()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-10-24 修回日期:2021-01-11 出版日期:2021-06-30 发布日期:2021-07-14
  • 通讯作者: 钟德云 E-mail:wangbo_lingli@163.com;deyizhiyun@163.com
  • 作者简介:王博(1995-),男,河南漯河人,硕士研究生,从事数字矿山和三维地质建模等方面的研究工作。wangbo_lingli@163.com
  • 基金资助:
    国家重点研发计划项目“基于大数据的金属矿开采装备智能管控技术研发与示范”(2019YFC0605304);湖南省重点研发计划项目“地下隐患和灾害检测监测技术和系统”(2018SK2051)

Automatic Construction Method of Constraint Rules for Implicit Modeling of Geological Bodies Based on Borehole Data

Bo WANG(),Kang HE,Deyun ZHONG()   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-10-24 Revised:2021-01-11 Online:2021-06-30 Published:2021-07-14
  • Contact: Deyun ZHONG E-mail:wangbo_lingli@163.com;deyizhiyun@163.com

摘要:

针对隐式建模约束规则构造自动化程度较低的问题,提出了一种基于钻孔数据进行地层特征参数自动提取与量化的方法。首先通过分析原始钻孔数据自动提取地层产状来表征地层的全局插值趋势;然后利用局部椭球体搜索邻域钻孔群来构造局部插值趋势,按照不同的搜索策略提取邻域边界点集;最后将构造的约束数据应用于基于径向基和克里金的2种隐式建模插值方法。试验结果表明:该方法兼顾了钻孔数据的异向性,能够很好地模拟沉积层和侵入体,且模型准确性好,符合地质学家的认知规律。

关键词: 隐式建模, 钻孔数据, 地质建模, 地质规则约束, 地层特征参数, 局部椭球体

Abstract:

Three-dimensional geological modeling can be divided into traditional wireframe modeling and implicit modeling.Compared with traditional wireframe modeling,implicit modeling method does not require a large number of human-computer interactions,and has the advantages of high model quality,repeatable process and fast local dynamic update speed.After years of research,various interpolation methods for implicit modeling have been developed,but the constraint data required for implicit modeling interpolation requires a lot of preprocessing,for a wide range of geological modeling work,manual processing of interpolation constraint data requires a lot of time and energy for geologists,and the operation of geological modeling based on manual processing is semi-automatic implicit modeling.In order to improve the automation degree of geologic body implicit modeling method,we proposed a method of automatic extraction and quantification of formation characteristic parameters based on borehole data,which can take into account the global occurrence characteristics of stratum and the local occurrence trend of borehole,and be used to construct interpolation constraints that control the geometry of different geological interfaces.This method analyzes the original geological drilling data,automatically extracts the occurrence of the formation to characterize the global interpolation trend of the formation,and then uses the local ellipsoid search to construct the neighborhood drilling group,extracts the field boundary point set according to different search strategies,and finally calculates the local occurrence parameters to construct local interpolation trends.Based on the above ideas,combined with the implicit modeling method of geological bodies considering the constraints of stratigraphic sequence,a complete geological body model that conforms to stratigraphic characteristics and satisfies the laws of stratigraphic sequence was constructed.The data extracted by this method were used to construct a single geological model of a uranium deposit in Xinjiang using the potential field method and the HRBF method,after that,a comprehensive model of complex shapes was constructed with full consideration of the constraints of geological rules.Comparison of the geometric form of a single model built by the two interpolation methods and the comparison of the exploration line profile of the overall model,the research results show that the new method takes into account the geological rules and constraints,can simulate sedimentary strata and intrusions strata well,and the model has good accuracy and conforms to the cognitive rules of geologists.

Key words: implicit modeling, borehole data, geological modeling, geological rule constraint, formation characteristic parameters, local ellipsoid

中图分类号: 

  • TD67

图1

梯度数据和方位信息关系图(a)产状信息(方位角和倾角);(b)梯度矢量在3个坐标轴上的投影"

图2

地质规则约束自动构建流程"

图3

原始钻孔点数据集投影图"

图4

邻域钻孔群示意图"

图5

特征点集提取示意图(a)局部双边界点集提取;(b)三钻孔拓扑关系"

图6

局部产状参数计算"

图7

钻孔数据与边界点集图"

图8

势场法和HRBF法叠加显示效果图"

图9

Gempy复杂地质模型求解技术路线图"

表1

地层序列规律及序列关系"

地层序列地层层序序列关系地层属性
细砂岩层8Erode侵入体
泥岩层7Erode侵入体
粗砂岩层6Erode侵入体
中砂岩层5Erode侵入体
顶层4Onlap沉积层
煤层3Onlap沉积层
砂泥混合层2Onlap沉积层
基岩1Onlap沉积层

图10

三维地质表面模型效果图"

图11

三维地质模型剖面图(a)各地层表面模型剖面图;(b)各地层块段模型剖面图"

Aug C,2004.3D Geological Modelling and Uncertainty: The Potential-field Method[D].Paris:Ecole Nationale Superieure des Mines de Paris.
Baker K A,Pixley A F,1975.Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems[J].Mathematische Ztschrift,143(2):165-174.
Bi Lin,Zhao Hui,Li Yalong,al et,2018.Biased-SVM and Poisson surface based three-dimensional automatic modeling method for orebodies[J].Journal of China University of Mining & Technology,47(5):1123-1130.
Calcagno P,Chilès J P,Courrioux G,al et,2008.Geological modelling from field data and geological knowledge:Part I.Modelling method coupling 3D potential-field interpolation and geological rules[J].Physics of the Earth and Planetary Interiors,171(1/2/3/4):147-157.
Cuomo S,Galletti A,Giunta G,al et,2017.Reconstruction of implicit curves and surfaces via RBF interpolation[J].Applied Numerical Mathematics,116:157-171.
Dong Zhaogang,2000.Calculate the occurrence of the surface by three-point coordinates in a plane of space[J].Yunnan Geology,(3):304-307.
Fleishman S,Cohen-Or D,Silva,al et,2005.Robust moving least-squares fitting with sharp features[J]. ACM Transaction on Graphics,24(3):544-552.
Frank T,Tertois A L,Mallet J L,2007.3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data[J].Computers & Geoences,33(7):932-943.
Guo J,Wu L,Zhou W,al et,2018.Section-constrained local geological interface dynamic updating method based on the HRBF surface[J].Journal of Structural Geology,107:64-72.
Guo Jiateng,Wu Lixin,Zhou Wenhui,2016.Implicit automatic 3D modeling method of ore body based on radial basis function surface[J].Journal of China Coal Society,41(8):2130-2135.
Lajaunie C,Courrioux G,Manuel L,1997.Foliation fields and 3D cartography in geology:Principles of a method based on potential interpolation[J].Mathematical Geology,29(4):571-584.
Lu G Y,Wong D W,2008.An adaptive inverse-distance weighting spatial interpolation technique[J].Computers & Geoences,34(9):1044-1055.
McInerney P,Guillen A,Courrioux G,al et,2005.Building 3D geological models directly from the data? A new approach applied to Broken Hill,Australia[J].Digital Mapping Te-chniques’05,5:119-130.
Miguel D L V,Schaaf A,Wellmann F,2019.GemPy 1.0:Open-source stochastic geological modeling and inversion[J].Geoscientific Model Development,12(1):1-32.
Olivier R,Cao H Q,2012.Nearest neighbor value interpolation[J].International Journal of Advanced Computer Sciences and Application,3(4):25-30.
Skala V,2017.RBF interpolation with CSRBF of large data sets[J].Procedia Computer Science,108:2433-2437.
Thornton J M,Mariethoz G,Brunner P,2018.A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research[J].Scientific Data,5(1):1-20.
Wang J,Zhao H,Bi L,al et,2018.Implicit 3D modeling of ore body from geological boreholes data using hermite radial basis functions[J].Minerals,8(10):443.
Wu Lixin,Wang Yunjia,Ding Enjie,al et,2012.Three discussions on digital mines:Leveraging the internet of things to ensure mine safety and intelligent mining[J].Journal of China Coal Society,37(3):357-365.
Zhang Shen,Ding Enjie,Zhao Xiaohu,al et,2007.Digital mine and its two basic platform construction[J].Journal of China Coal Society,(9):997-1001.
Zhong D Y,Wang L G,Bi L,al et,2019a.Implicit modeling of complex orebody with constraints of geological rules[J].Transactions of Nonferrous Metals Society of China,29(11):2392-2399.
Zhong D Y,Wang L G,Bi L,al et,2019b.Implicit surface reconstruction based on generalized radial basis functions interpolant with distinct constraints[J].Applied Mathematical Modelling,71:408-420.
毕林,赵辉,李亚龙,等,2018.基于Biased-SVM和Poisson曲面矿体三维自动建模方法[J].中国矿业大学学报,47(5):1123-1130.
董兆岗,2000.通过空间一平面内三点坐标计算该面产状[J].云南地质,(3):304-307.
郭甲腾,吴立新,周文辉,2016.基于径向基函数曲面的矿体隐式自动三维建模方法[J].煤炭学报,41(8):2130-2135.
吴立新,汪云甲,丁恩杰,等,2012.三论数字矿山——借力物联网保障矿山安全与智能采矿[J].煤炭学报,37(3):357-365.
张申,丁恩杰,赵小虎,等,2007.数字矿山及其两大基础平台建设[J].煤炭学报,(9):997-1001.
[1] 魏明,赵彬,王锐,潘振兴,曹立国. 基于三维模型的矿床品位分布规律研究——以陕西龙头沟金矿为例[J]. 黄金科学技术, 2019, 27(2): 172-180.
[2] 安乐,何虎军,杨兴科,韩柯,李斌,胡国朝. 基于Surpac的马蹄沟金矿床三维地质模型构建及找矿预测[J]. 黄金科学技术, 2018, 26(5): 586-595.
[3] 周坤,郑立明. 最近距离法在贵金属矿体圈定中的应用——以南非某层状铂矿为例[J]. 黄金科学技术, 2013, 21(3): 55-58.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!