img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 372-381.doi: 10.11872/j.issn.1005-2518.2021.03.012

• 采选技术与矿山管理 • 上一篇    下一篇

不同应力条件下硬岩强度与破裂特性试验研究

杜坤1,2(),杨颂歌1,苏睿1,杨成志1,王少锋1()   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.中南大学高等研究中心,湖南 长沙 410083
  • 收稿日期:2021-01-01 修回日期:2021-02-24 出版日期:2021-06-30 发布日期:2021-07-14
  • 通讯作者: 王少锋 E-mail:dukuncsu@csu.edu.cn;sf.wang@csu.edu.cn
  • 作者简介:杜坤(1985-),男,山东泰安人,研究员,博士生导师,从事深部矿山开采及岩石力学方面的研究工作。dukuncsu@csu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目“深部硬岩矿山工程围岩非常规破裂演化与阻断机制”(51774326);国家自然科学基金青年基金项目“高应力硬岩真三轴卸载下扰动破裂特性与机制研究”(51504287)

Experimental Study on Strength and Fracture Characteristics of Hard Rock Under Different Stress Conditions

Kun DU1,2(),Songge YANG1,Rui SU1,Chengzhi YANG1,Shaofeng WANG1()   

  1. 1.School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Advanced Research Center,Central South University,Changsha 410083,Hunan,China
  • Received:2021-01-01 Revised:2021-02-24 Online:2021-06-30 Published:2021-07-14
  • Contact: Shaofeng WANG E-mail:dukuncsu@csu.edu.cn;sf.wang@csu.edu.cn

摘要:

深部工程围岩内的岩石可能处于一维、二维和三维应力状态下,分别对应室内单轴压缩、双轴压缩和真三轴压缩试验中岩样的应力状态。通过开展单轴、双轴和真三轴压缩试验,系统研究了不同应力状态和水平下岩石非常规破坏的发生机制。不同高宽比和宽厚比岩样的单轴压缩试验结果表明:随着岩样厚度的增加,单轴抗压强度单调增加;随着岩样高度的增加,单轴抗压强度往往先增加后减小,且矮薄岩样更容易发生岩爆和板裂等非常规破坏。双轴或真三轴压缩试验中岩样的抗压强度均表现出明显的中间主应力效应。在相同最小主应力下,随着中间主应力的增加,岩样的双轴抗压强度和真三轴抗压强度均呈先增加后减小的变化趋势,双轴抗压强度增长率则呈先减小而后小幅增大的趋势。通过定义强度增量参数ν和中间主应力位置参数λ构建了指数岩石真三轴强度准则。低围压限制、非对称围压限制和短裂纹扩展路径是引起岩石非常规破坏的主要条件。

关键词: 硬岩, 应力状态, 应力水平, 强度特性, 破坏模式, 中间主应力效应

Abstract:

The unconventional failure phenomenon of rocks,such as slabbing and rock burst,occur frequently in deep engineering,which bring huge financial loss and casualties.The occurring mechanism of the un-conventional failure is still unclear,and the stress state and levels of rocks is the main factors inducing unconventional failure.The surrounding rocks of deep engineering is under a one-dimensional,two-dimensional or three-dimensional stress conditions,corresponding to the stress state of the rock specimen in the uniaxial,biaxial or true triaxial compression tests,respectively.In this study,the uniaxial,biaxial or true triaxial compression tests were carried out to reveal the occurring terms of the unconventional failure of rocks.The isolated ore pillars left after room-pillar mining are usually under one-dimensional compressive stress.Through uniaxial compression tests of rock specimens with different height-width ratios and width-thickness ratios,it is found that the strength of rock specimen exhibits obvious characteristics of non-linear changes as the height and width of rock specimen increase.As the thickness increases,the uniaxial compressive strength increases.As the height increases,the uniaxial compressive strength tends to increase first and then decrease.This is mainly related to the slabbing failure of the dwarf and thin rock specimens.Combining the uniaxial compression test of cuboid rock specimens and the reduction of rock mass mechanical parameters,the safety evaluation of the isolated pillars can be conducted.Based on the fact that the surrounding rocks of underground engineering are often under a two-dimensional stress state,and the fact that rocks far away from the boundaries of underground engineering are often under a three-dimensional stress state,the biaxial compression and true triaxial compression tests of cubic rock specimens have been carried out.The rock strength in biaxial or true triaxial test shows obvious intermediate principal stress effect.Under the same minimum principal stress,the biaxial compressive strength and true-triaxial compressive strength of rocks increases first and then decreases with the increase of the intermediate principal stress,and the change rate of biaxial compressive strength decreases firstly and then shows a little increase.An exponential rock strength criterion was constructed by defining the strength increment parameter ν and the intermediate principal stress position parameter λ.It is considered that low confining pressure limitation,asymmetric confining pressure limitation and short crack propagation path are the main terms for unconventional failures of rocks under multi-dimensional stress conditions.

Key words: hard rock, stress state, stress level, strength characteristic, fracture mode, intermediate principal stress effect

中图分类号: 

  • TU452

图1

深部岩体力学与岩体灾害研究基础"

图2

我国硬岩地下工程原岩应力水平及不同位置岩体的应力状态[图(a)~(c)的数据来源于Du et al.,2020a]"

图3

花岗岩岩石试样及真三轴测试系统"

图4

加载路径"

图5

花岗岩单轴抗压强度σucs与厚度T和高度H的关系"

图6

花岗岩单轴抗压强度σucs与宽厚比u和高宽比r的关系曲线"

图7

单轴压缩试验下花岗岩破坏模式与高宽比r和宽厚比u的关系"

图8

中间主应力σ2与花岗岩双轴抗压强度σbcs和强度增长率IR的关系曲线"

图9

双轴压缩试验下花岗岩破坏模式与中间主应力σ2的关系(Du et al.,2021)"

图10

真三轴压缩强度σtts随围压的变化规律注:图(b)数据来源于Du et al.(2020b)"

图11

真三轴压缩试验下花岗岩破坏碎片及破裂角(Du et al.,2020b)"

Barton N R,1976.The shear strength of rock and rock joints[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,13:255-279.
Chang C,Hairnso B,2000.True triaxial strength and deformability of the German Continental Deep Drilling Program (KTB) deep hole amphibolite[J].Journal of Geophysical Research,105:18999-19013.
Cheng Li,Liu Huanxin,Zhu Mingde,al et,2020.Current situation and prospect of research on underground goaf in metal mines[J].Gold Science and Technology,28(1):70-81.
Du K,Li X B,Li D Y,al et,2015.Failure properties of rocks in true triaxial unloading compressive test[J].Transactions of Nonferrous Metals Society of China,25(2):571-581.
Du K,Li X F,Yang C Z,al et,2020a.Experimental investigations on mechanical performance of rocks under fatigue loads and biaxial confinements[J].Journal of Central Sou-th University,27(10):2985-2998.
Du K,Liu M,Yang C,al et,2021.Mechanical and acoustic emission (AE) characteristics of rocks under biaxial confinements[J].Applied Sciences,11:769.
Du K,Su R,Tao M,al et,2019.Specimen shape and cross-section effects on the mechanical properties of rocks under uniaxial compressive stress[J].Bulletin of Engineering Geology and the Environment,78:6061-6074.
Du K,Tao M,Li X B,al et,2016.Experimental study of slabbing and rockburst induced by true-triaxial unloading and local dynamic disturbance[J].Rock Mechanics and Rock Engineering,49(9):1-17.
Du K,Yang C Z,Su R,al et,2020b.Failure properties of cubic granite,marble,and sandstone specimens under true triaxial stress[J].International Journal of Rock Mechanics and Mining Sciences,130:104309. DOI:10.1016/j.ijrmms.2020.104309.
doi: 10.1016/j.ijrmms.2020.104309
Feng X,Kong R,Zhang X,al et,2019.Experimental study of failure differences in hard rock under true triaxial compression[J].Rock Mechanics and Rock Engineering,52:2109-2122.
Haimson B,Chang C,2000.A new true triaxial cell for testing mechanical properties of rock,and its use to determine rock strength and deformability of Westerly granite[J].International Journal of Rock Mechanics and Mining Sciences,37:285-296.
Labuz J F,Bridell J M,1993.Reducing frictional constraint in compression testing through lubrication[J].International Journal of Rock Mechanics and Mining Sciences,30:451-455.
Li D Y,Li C C,Li X B,2011.Influence of specimen height-to-width ratios on failure mode for rectangular prism specimens of hard rock loaded in uniaxial compression[J].Rock Mechanics and Rock Engineering,44(3):253-267.
Li Xiang,Huai Zhen,Li Xibing,al et,2019.Study on fracture characteristics and mechanical properties of brittle rock based on crack propagation model[J].Gold Science and Technology,27(1):41-51.
Li Xibing,Gong Fengqiang,Wang Shaofeng,al et,2019.Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines[J].Chinese Journal of Rock Mechanics and Engineering,38(4):708-723.
Li Xibing,Liu Bing,2018.Review and exploration of current situation of backfill mining in hard rock mines[J].Gold Science and Technology,26(4):492-502.
Li Xibing,Zhou Jian,Wang Shaofeng,al et,2017.Review and practice of deep mining for solid mineral resources[J].The Chinese Journal of Nonferrous Metals,27(6):1236-1262.
Mogi K,1967.Effect of the intermediate principal stress on rock failure[J].Journal of Geophysical Research,72(20):5117-5132.
You M,2009.True-triaxial strength criteria for rock[J].International Journal of Rock Mechanics and Mining Sciences,46:115-127.
程力,刘焕新,朱明德,等,2020.金属矿山地下采空区问题研究现状与展望[J].黄金科学技术,28(1):70-81.
李夕兵,宫凤强,王少锋,等,2019.深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J].岩石力学与工程学报,38(4):708-723.
李夕兵,刘冰,2018.硬岩矿山充填开采现状评述与探索[J].黄金科学技术,26(4):492-502.
李夕兵,周健,王少锋,等,2017.深部固体资源开采评述与探索[J].中国有色金属学报,27(6):1236-1262.
李响,怀震,李夕兵,等,2019.基于裂纹扩展模型的脆性岩石破裂特征及力学性能研究[J].黄金科学技术,27(1):41-51.
[1] 谢志英, 许可, 陆逸帆, 肖桃李, 折海成, 赵云峰. 三轴压缩下单裂隙位置对复合岩样力学变形与破坏模式的影响[J]. 黄金科学技术, 2024, 32(3): 458-469.
[2] 周盛全, 王瑞, 田诺成, 李栋伟. 冲击荷载作用下热处理花岗岩动态力学特性研究[J]. 黄金科学技术, 2022, 30(2): 222-232.
[3] 王少锋, 李夕兵. 深部硬岩可切割性及非爆机械化破岩实践[J]. 黄金科学技术, 2021, 29(5): 629-636.
[4] 赵国彦,党成凯,刘焕新,刘洋,肖屈日,李洋,陈立强,毛文杰. 基于距离判别分析的矿山岩爆倾向性评价[J]. 黄金科学技术, 2021, 29(5): 690-697.
[5] 郭婧宇,蒲成志,贺桂成,李益龙,杨少峰,曾佳君. 静态—准静态加载下含裂隙类岩材料破断试验及声发射特性分析[J]. 黄金科学技术, 2020, 28(6): 877-884.
[6] 戴兵, 单启伟, 罗鑫尧, 薛永明. 含孔洞岩石在静应力下的循环冲击试验研究[J]. 黄金科学技术, 2020, 28(4): 531-540.
[7] 张栩栩,杨仕教,曾佳君,罗可,蒲成志. 含预制缺陷类岩体模型破断试验与分析[J]. 黄金科学技术, 2020, 28(2): 255-263.
[8] 陈昊然,曹平,冉龙威. 含齿形裂隙类岩石材料单轴压缩试验研究[J]. 黄金科学技术, 2019, 27(3): 398-405.
[9] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[10] 陈冲,李夕兵,冯帆. 诱导巷道的围岩松动破坏区数值研究[J]. 黄金科学技术, 2018, 26(6): 771-779.
[11] 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术, 2018, 26(4): 492-502.
[12] 卓毓龙,陈辰,曹世荣,王晓军,冯萧. 块石对充填体强度特性及损伤演化的影响[J]. 黄金科学技术, 2016, 24(3): 76-80.
[13] 陆爱珍,辛金生,富利娥. 坚硬岩体巷道掘进爆破技术方案设计与试验[J]. J4, 2001, 9(5): 39-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!