黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 411-420.doi: 10.11872/j.issn.1005-2518.2021.03.007
Jin HUANG(),Kewei LIU(),Shaohu JIN
摘要:
为了研究白麻花岗岩在高强度弹体中高速侵彻条件下的力学损伤响应,运用显式动力学有限元分析软件LS-DYNA,应用经SHPB试验验证的HJC材料模型,开展了弹头形状系数为3、直径为?20 mm、长径比为6的刚性弹体以不同初速度侵彻白麻花岗岩靶体的一系列数值模拟研究。同时,针对传统有限元方法难以解决材料大变形导致的网格畸变等问题,采用SPH-FEM耦合方法对靶体进行建模。通过改变弹体配置,研究了不同弹头形状对弹体侵彻性能的影响。模拟结果表明:SPH-FEM方法可以有效模拟岩石靶体受高速冲击的力学损伤响应。由不同撞击速度与侵彻深度的关系得到了有关白麻花岗岩侵彻深度的经验公式,其中侵彻深度与撞击速度呈正比,经验公式可用于相似强度岩体的侵彻深度预测。当初速度为50,100,150,200,250,300 m/s时,平头弹侵彻深度分别为卵形弹侵彻深度的16.7%、27.8%、35.1%、32.1%、36.1%和40.5%,平头弹的侵彻性能远低于卵形弹,且侵彻损伤区域较小。
中图分类号:
Berard R S,1975.Deep penetration theory for homogeneous and layered targets[R].Vicksburg:Army Engineer Waterways Experiment Station. | |
Berard R S,1977.Empirical analysis of projectile penetration in rock[R].Vicksburg:Army Engineer Waterways Experiment Station. | |
Berard R S,1978.Depth and motion prediction for earth penetrators[R].Vicksburg:Army Engineer Waterways Experiment Station. | |
Deng Yongjun,Chen Xiaowei,Yao Yong,2020.Study on the cavity expansion response of the concrete target under penetration[J]. Scientia Sinica(Physica,Mechanica & Astronomica),50(2):34-51. | |
Fang Qin,Kong Xiangzhen,Wu Hao,al et,2014.Determination of Holmquist-Johnson-Cook constitutive model parameters of rock[J].Engineering Mechanics,31(3):197-204. | |
Forrestal M J,Altman B S,Cargile J D,al et,1994.An empirical equation for penetration depth of ogive-nose projectiles into concrete targets[J].International Journal of Impact Engineering,15(4): 395-405. | |
Forrestal M J,Luk V K,1992.Penetration into soil targets[J].International Journal of Impact Engineering,12(3):427-444. | |
Frew D J,Forrestal M J,Hanchak S J,2000.Penetration experiments with limestone targets and ogive-nose steel projectiles[J].Journal of Applied Mechanics,67(4):841-845. | |
Holmquist T J,Johnson G R,Cook W H,1993.A computational constitutive model for concrete subjected to large strains,high strain rates,and high pressures[C]//The International Symposium on Ballistics.Arlington:American Defense Preparedness Association:591-600. | |
Kuang Yuchun,Zhu Zhipu,Jiang Haijun,al et,2012. The experimental study and numerical simulation of single-particle impacting rock[J].Acta Petrolei Sinica,33(6):1059-1063. | |
Liu G R,Liu M B, 2005.Smoothed Particle Hydrodynamics: A Meshfree Particle Method[M].Han Xu,Yang Gang,Qiang Hongfu,transl.Changsha:Hunan University Press. | |
Livingston C W,Smith F L,1951.Bomb penetration projectile[R].Golden:Colorado School of Mines Research Foundation. | |
Ren G M,Wu H,Fang Q,al et,2017.Parameters of Holmquist-Johnson-Cook model for high-strength concrete-like materials under projectile impact[J].International Journal of Protective Structures,8(3):352-367. | |
Shen Jun,Liu Ruizhao,Yang Jianchao,al et,2008.Experimental and theoretical studies of projectile penetrating rocks[J].Chinese Journal of Rock Mechanics and Engineering,27(5):946-952. | |
Wang Mingyang,Deng Hongjian,Qian Qihu,2005. Study on problems of near cavity of penetration and explosion in rock[J]. Chinese Journal of Rock Mechanics and Engineering,24(16):62-66. | |
Wang Mingyang,Li Jie,Li Haibo,al et,2018.Dynamic compression behavior of rock and simulation of damage effects of hypervelocity kinetic energy bomb[J].Explosion and Shock Waves,38(6):1200-1217. | |
Wang Mingyang,Rong Xiaoli,Qian Qihu,al et,2003.Calculation principle for penetration and perforation of projectiles into rock[J]. Chinese Journal of Rock Mechanics and Engineering,22(11):1811-1816. | |
Wen Lei,Li Xibing,Wu Qiuhong,al et,2016.Study on parameters of Holmquist-Johnson-Cook model for granite porphyry[J].Chinese Journal of Computational Mechanics,33(5):725-731. | |
Young C W,1967.The development of empirical equation for prediction depth of an earth penetrating projectiles[R].Albuquerque:Sandia National Laboratories. | |
Young C W,1997.Penetration equations[R].Albuquerque:Sandia National Laboratories. | |
Zhang Dezhi,Lin Junde,Tang Rundi,al et,2006.An empirical equation for penetration depth of projectiles into high-strength rock targets[J].Acta Armamentarii,27(1):15-18. | |
Zhang Dezhi,Zhang Xiangrong,Lin Junde,al et,2005.Penetration experiments for normal impact into granite targets with high-strength steel projectile[J].Chinese Journal of Rock Mechanics and Engineering,24(9):1612-1618. | |
Zhao Jian,Wu Xianzhu,Han Liexiang,al et,2013.Study on new progress of particle impact drilling technology and rock breaking numerical simulation[J].Drilling & Production Technology,36(1):1-5,7. | |
Н Ханукаев A,1980.Physical process of mineral rock mass blasting[M].Liu Dianzhong,transl.Beijing:Metallurgical Industry Press. | |
邓勇军,陈小伟,姚勇,2020.钢筋混凝土靶侵彻过程中空腔膨胀响应分区研究[J].中国科学(物理学 力学 天文学),50(2):34-51. | |
方秦,孔祥振,吴昊,等,2014.岩石Holmquist-Johnson-Cook模型参数的确定方法[J].工程力学,31(3):197-204. | |
哈努卡耶夫A H,1980.矿岩爆破物理过程[M].刘殿中,译.北京:冶金工业出版社. | |
况雨春,朱志镨,蒋海军,等,2012.单粒子冲击破岩实验与数值模拟[J].石油学报,33(6):1059-1063. | |
Liu G R,Liu M B,2005.光滑粒子流体动力学:一种无网格粒子法[M].韩旭,杨刚,强洪夫,译.长沙:湖南大学出版社. | |
沈俊,刘瑞朝,杨建超,等,2008.弹体侵彻岩体效应试验与理论研究[J].岩石力学与工程学报,27(5):946-952. | |
王明洋,邓宏见,钱七虎,2005.岩石中侵彻与爆炸作用的近区问题研究[J].岩石力学与工程学报, 24(16):62-66. | |
王明洋,李杰,李海波,等,2018.岩石的动态压缩行为与超高速动能弹毁伤效应计算[J].爆炸与冲击,38(6):1200-1217. | |
王明洋,戎晓力,钱七虎,等,2003.弹体在岩石中侵彻与贯穿计算原理[J].岩石力学与工程学报,22(11):1811-1816. | |
闻磊,李夕兵,吴秋红,等,2016.花岗斑岩Holmquist-Johnson-Cook本构模型参数研究[J].计算力学学报,33(5):725-731. | |
张德志,林俊德,唐润棣,等,2006.高强度岩石侵彻经验公式[J].兵工学报,27(1):15-18. | |
张德志,张向荣,林俊德,等,2005.高强钢弹对花岗岩正侵彻的实验研究[J].岩石力学与工程学报,24(9):1612-1618. | |
赵健,伍贤柱,韩烈祥,等,2013.粒子钻井技术新进展与破岩数值模拟研究[J].钻采工艺,36(1):1-5,7. |
[1] | 何祥锐, 邱贤阳, 史秀志, 李小元, 支伟, 刘军, 王远来. 基于非线性弹性地基梁的地下矿山充填开采覆岩移动规律研究[J]. 黄金科学技术, 2024, 32(4): 640-653. |
[2] | 虞云林, 侯克鹏, 杨八九, 程涌, 卢泰宏, 张楠楠. 云锡高峰山矿段矿柱回采方案研究[J]. 黄金科学技术, 2024, 32(3): 445-457. |
[3] | 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522. |
[4] | 刘宽, 莫冠旺, 李响, 沈平欢, 万波, 刘建坤. 超大断面扁平结构隧道施工参数优化研究[J]. 黄金科学技术, 2024, 32(2): 330-344. |
[5] | 王开彬, 刘钦, 王洪涛. 压力型锚索锚固段荷载传递特征及影响因素研究[J]. 黄金科学技术, 2024, 32(1): 123-131. |
[6] | 徐泽峰, 史秀志, 黄仁东, 丁文智, 陈新. 基于满管输送的充填管路优化研究[J]. 黄金科学技术, 2024, 32(1): 160-169. |
[7] | 李杰林, 刘一良, 王玉普, 李在利, 周科平, 程春龙. 高温独头巷道压抽混合式通风参数对人工制冷降温效果的影响[J]. 黄金科学技术, 2024, 32(1): 63-74. |
[8] | 费鸿禄, 纪海楠, 山杰. 露天台阶水介质间隔装药结构优选及对比试验研究[J]. 黄金科学技术, 2023, 31(6): 930-943. |
[9] | 单文法, 毛先成, 刘占坤, 邓浩, 陈进, 张维, 王海正, 杨鑫. 胶东大尹格庄金矿床成矿过程数值模拟及其找矿意义[J]. 黄金科学技术, 2023, 31(5): 707-720. |
[10] | 张玉, 王文己, 孙加奇, 肖永刚. 层理结构板岩动态断裂特性[J]. 黄金科学技术, 2023, 31(5): 803-810. |
[11] | 赵亚楠, 赵一航, 蒋中明, 赵红敏. 基于离散元法的高放核废料储罐静动力稳定性初步研究[J]. 黄金科学技术, 2023, 31(4): 592-604. |
[12] | 马恒,高嘉毅,李世虎,高科. 双机并联空气幕射流角度对巷道风流的影响[J]. 黄金科学技术, 2022, 30(5): 743-752. |
[13] | 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763. |
[14] | 周占星,刘科伟,李旭东,黄晓辉,马泗洲. 油罐爆炸作用下隧道衬砌动力响应数值模拟研究[J]. 黄金科学技术, 2022, 30(4): 612-622. |
[15] | 钟伶志,毛先成,刘占坤,肖克炎,王春锬,陈武. 胶东三山岛金矿带构造几何特征控矿作用:来自数值模拟的启示[J]. 黄金科学技术, 2022, 30(3): 352-365. |
|