img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 433-439.doi: 10.11872/j.issn.1005-2518.2021.03.154

• 采选技术与矿山管理 • 上一篇    下一篇

基于未确知测度理论的石英脉型钨矿山采空区稳定性评价

叶光祥1(),黄智群2,王晓军3,张树标1,苑栋1   

  1. 1.赣州有色冶金研究所有限公司,江西 赣州 341000
    2.江西漂塘钨业有限公司,江西 大余 341500
    3.江西理工大学,江西 赣州 341000
  • 收稿日期:2020-08-31 修回日期:2021-03-18 出版日期:2021-06-30 发布日期:2021-07-14
  • 作者简介:叶光祥(1989-),男,江西赣州人,工程师,从事矿床开采与地压控制方面的研究工作。ygx912441832@163.com

Evaluation of Goaf Stability in Vein Quartz Tungsten Mines Based on Unascertained Measure Theory

Guangxiang YE1(),Zhiqun HUANG2,Xiaojun WANG3,Shubiao ZHANG1,Dong YUAN1   

  1. 1.Ganzhou Research Institute of Non-Ferrous Metallurgy Co. ,Ltd. ,Ganzhou 341000,Jiangxi,China
    2.Jiangxi Piaotang Tungsten Industry Co. ,Ltd. ,Dayu 341500,Jiangxi,China
    3.Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
  • Received:2020-08-31 Revised:2021-03-18 Online:2021-06-30 Published:2021-07-14

摘要:

采空区是地下矿山重大安全隐患源,其稳定性是行业科技工作者关注的焦点。以石英脉型钨矿山采空区稳定性评价作为研究对象,基于未确知测度计算理论,构建了适用于脉型矿床的采空区危险性评价体系及分级标准,并应用于矿山评价实践。结果表明:浅孔留矿法单脉开采空区稳定性普遍优于阶段矿房法脉带开采空区,矿柱的回收极大地加速了空区的失稳破坏;评价结果与矿区实际情况吻合度高,可为矿区采空区处理与残矿回收提供指导意见。基于未确知测度理论的空区稳定性评价为石英脉型钨矿山采空区稳定性评价提供了一种新的途径。

关键词: 未确知测度理论, 分级标准, 评价体系, 钨矿山, 脉型矿床, 采空区, 稳定性评价

Abstract:

Goaf is a major potential safety hazard of underground mines,and its stability has always been the focus attention of the majority of practitioners.Aiming at the difficulty in analysis and evaluation of the stability of quartz vein type wolframite ore veins and surrounding rocks,and there is no suitable method for analysis and evaluation of the stability of the goaf,the unascertained measurement theory was proposed.Firstly,11 factors affecting the stability of the goaf were selected,which including the mining width and the exposed area of roof,and the impact evaluates was conducted according to the stability classification of the goaf,thus, a single index measure function was constructed for the stability evaluation of quartz vein goaf.Then,the evaluation vector of multiple indexes comprehensive measurement was formed by determining the influence factor weight of each goaf.Finally,the stability evaluation level of each goaf is obtained based on the confidence recognition criterion.The results show that 55 are stable(Ⅰ) among the 191 goaf areas surveyed,82 are generally stable (Ⅱ),25 are less stable (Ⅲ),and 29 are unstable(Ⅳ).The stability of the single-vein mining goaf of shallow hole retention method is generally better than that of the phase mining goaf,the less stable or unstable goaf is mainly vein zone.The recovery of the pillars greatly accelerates the instability of the goaf.The analysis also shows the mining width and the exposed area are the main factors controlling the stability of the goaf,and for this mining area,the stability limit of the mining width and the exposed area is 16 m and 800 m2 respectively.Based on the highly consistent of the evaluation results with the actual situation of the stability of the goaf,it is considered that the evaluation of the stability of the goaf based on the unascertained measurement theory provides a new way for the stability evaluation of the goaf of the quartz vein type tungsten mine.The two quantitative grading standards of mining width and roof exposed area proposed in this paper can be promoted and used in the analysis and evaluation of the stability of the goaf of the same type of mine.

Key words: unascertained measure theory, classification criterion, evaluation system, tungsten mines, vein type deposit, goaf, stability evaluation

中图分类号: 

  • TD853

表1

定量指标分级标准"

影响程度等级采幅/m顶板暴露面积/m2
Ⅰ级(C1<3<200
Ⅱ级(C23~8200~800
Ⅲ级(C38~20800~1 200
Ⅳ级(C4>20>1 200

图1

采空区定性指标单指标未确知测度函数"

图2

采空区采幅单指标未确知测度函数"

图3

采空区顶板暴露面积单指标未确知测度函数"

表2

采空区稳定性评价指标取值"

中段矿带号空区编号S1S2S3S4S5S6S7S8S9S10S11
388Ⅲ124Ⅱ12123321.39431.440
Ⅲ8104323444271 00040.740
Ⅲ683333331732440.793
Ⅲ46333433329030.900
Ⅲ13W12221211684041.656
Ⅲ102N43234431968540.740
Ⅲ022222121312030.870
Ⅲ014323433331 36540.857
S2146N43344421450440.900
SⅢ1264334242321041.556

表3

采空区稳定性评价结果"

中段矿带号空区编号C1C2C3C4评价等级实际破坏情况
388Ⅲ124Ⅱ0.32420.29530.38050.0000未破坏
Ⅲ8100.00000.00000.40050.5995顶板回收,间柱破坏
Ⅲ680.11010.02720.86270.0000未破坏
Ⅲ460.16780.00000.83220.0000未破坏
Ⅲ13W0.32200.65180.02100.0051顶、底柱回收,间柱破坏
Ⅲ102N0.00000.03710.32480.6381顶柱回收,间柱破坏
Ⅲ020.50000.50000.00000.0000未破坏
Ⅲ010.00000.00000.40050.5995顶柱自然崩落
S2146N0.00000.03610.23450.7294顶柱、间柱破坏
SⅢ1260.17170.23900.04060.5487顶、底柱破坏

图4

采空区稳定性评价结果分布情况"

图5

已破坏采空区稳定性评价结果分布情况"

图6

较不稳定与不稳定采空区矿脉分布情况"

图7

采空区稳定性影响因子分析"

Cheng Aibao,Wang Xinmin,Liu Hongqiang,2011.Application of gray hierarchy analysis in the stability evaluation of underground mined-out areas[J].Metal Mine,40(2):17-21.
Cheng Li,Liu Huanxin,Zhu Mingde,al et,2020.Current situation and prospect of research on underground goaf in metal mines[J].Gold Science and Technology,28(1):70-81.
Deng Gao,Yang Shan,2017.Stability evaluation of goafs based on combined forecasting and variable precision rough fuzzy set[J].Gold Science and Technology,25(3):98-107.
Du Kun,Li Xibing,Liu Kewei,al et,2011.Comprehensive evaluation of underground goaf risk and engineering application[J].Journal of Central South University (Science and Technology),42(9):2802-2811.
Fu Wubin,Deng Kazhong,Zhang Liya,2011.Stability analysis of coal pillar in goaf by room-column method [J].Safety in Coal Mines,42(1):136-139.
Gong Fengqiang,Li Xibing,Dong Longjun,al et,2008.Underground goaf risk evaluation based on uncertainty measure theory[J].Chinese Journal of Rock Mechanics and Engineering,27(2):323-330.
Hao Xubin,Yang Lihui,Wan Sheng,2013.Stability evaluation for mine gob areas based on AHP and fuzzy synthetic judgement theory[J].Gold Science and Technology,21(6):63-67.
Huang Yinghua,Xu Bigen,Tang Shaohui,2009.Study on the damage pattern sand mechanism of mined-out area in mines using room-and-pillar mining method [J].Mining Research & Development,29(4):24-26.
Kou Xiangyu,Jia Mingtao,Wang Liguan,al et,2010.Evaluation and analysis of stability of mined-out area based on the CMS and DIMINE-FLAC3D coupling technique[J].Mineral Engineering Research,25(1):31-35.
Liu Muyu,Xu Changyou,2000.Stability analysis of pillars in mined-out area[J].Mining and Metallurgical Engineering,20(1):19-22.
Luo Zhouquan,Liu Xiaoming,Wu Yabin,al et,2008.Study on cavity stability numerical simulation based on coupling of Surpac and Phase2[J].Journal of Liaoning Technical University(Natural Science),27(4):485-488.
Song Weidong,Fu Jianxin,Du Jianhua,al et,2012.Analysis of stability of goaf group in metal mines based on precision detection[J].Rock and Soil Mechanics,33(12):3781-3787.
Tang Shuo,Luo Zhouquan,Xu Hai,2012.Evaluation of stability of goaf based on fuzzy matter-element theory[J].China Safety Science Journal,22(7):24-30.
Wang Jilin,Jiang Bo,2005.Fuzzy comprehensive evaluation of stability in a coal mine area[J].Ground Pressure and Strata Control,(2):29-31,34.
Wang Xinmin,Ding Deqiang,Duan Yu,2006.Applications of the grey relation analysis in the evaluation of the risk degree of the underground mined-out stopes[J].Journal of Safety Science and Technology,(4):35-39.
Wu Qihong,Wan Shiming,Peng Wenxiang,2012.A comprehensive evaluation method about stability of polylaminate goafs[J].Journal of Central South University (Science and Technology),43(6):2324-2330.
Xie Xingzhi,2014.Study on stability of roof-coal pillar in room and pillar mining goaf in shallow depth seam [J].Coal Science and Technology,42(7):1-4,9.
Yang Yang,Feng Naiqi,Yu Zhenyou,al et,2008.Comprehensive stability evaluation for mined-out areas based on AHP and fuzzy mathematics[J].Nonferrous Metals (Mining Section),(5):37-39,42.
Zhang Jian,Zhang Yuanfang,Yuan Tiezhu,al et,2010.Analysis and appraisal for stabiliy of goaf[J].Journal of Water Resources and Architectural Engineering,8(2):145-146,155.
Zhang Lin,Sun Guoquan,Li Tongpeng,al et,2013.Research of detection and comprehensive treatment of underground mine goaf and its application[J].Metal Mine,42(11):1-4,138.
程爱宝,王新民,刘洪强,2011.灰色层次分析法在地下采空区稳定性评价中的应用[J].金属矿山,40(2):17-21.
程力,刘焕新,朱明德,等,2020.金属矿山地下采空区问题研究现状与展望[J].黄金科学技术,28(1):70-81.
邓高,杨珊,2017.基于组合预测与变精度粗糙模糊集的采空区稳定性评价[J].黄金科学技术,25(3):98-107.
杜坤,李夕兵,刘科伟,等,2011.采空区危险性评价的综合方法及工程应用[J].中南大学学报(自然科学版),42(9):2802-2811.
付武斌,邓喀中,张立亚,2011.房柱式采空区煤柱稳定性分析[J].煤矿安全,42(1):136-139.
宫凤强,李夕兵,董陇军,等,2008.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报,27(2):323-330.
郝旭彬,杨立辉,万胜,2013.基于AHP及模糊综合评判法的采空区稳定性评价[J].黄金科学技术,21(6):63-67.
黄英华,徐必根,唐绍辉,2009.房柱法开采矿山采空区失稳模式及机理[J].矿业研究与开发,29(4):24-26.
寇向宇,贾明涛,王李管,等,2010.基于CMS及DIMINE-FLAC3D耦合技术的采空区稳定性分析与评价[J].矿业工程研究,25(1):31-35.
刘沐宇,徐长佑,2000.地下采空区矿柱稳定性分析[J].矿冶工程,20(1):19-22.
罗周全,刘晓明,吴亚斌,等,2008.基于Surpac和Phase2耦合的采空区稳定性模拟分析[J].辽宁工程技术大学学报(自然科学版),27(4):485-488.
宋卫东,付建新,杜建华,等,2012.基于精密探测的金属矿山采空区群稳定性分析[J].岩土力学,33(12):3781-3787.
唐硕,罗周全,徐海,2012.基于模糊物元的采空区稳定性评价研究[J].中国安全科学学报,22(7):24-30.
汪吉林,姜波,2005.煤矿采空区稳定性的模糊综合评判[J].矿山压力与顶板管理,(2):29-31,34.
王新民,丁德强,段瑜,2006.灰色关联分析在地下采空区危险度评价中的应用[J].中国安全生产科学技术,(4):35-39.
吴启红,万世明,彭文祥,2012.一种多层采空区群稳定性的综合评价法[J].中南大学学报(自然科学版),43(6):2324-2330.
解兴智,2014.浅埋煤层房柱式采空区顶板—煤柱稳定性研究[J].煤炭科学技术,42(7):1-4,9.
杨扬,冯乃琦,余珍友,等,2008.基于层次分析和模糊数学的采空区稳定性综合评价[J].有色金属(矿山部分),(5):37-39,42.
张建,张远芳,袁铁柱,等,2010.采空区稳定性分析与评价[J].水利与建筑工程学报,8(2):145-146,155.
章林,孙国权,李同鹏,等,2013.地下矿山采空区探测及综合治理研究与应用[J].金属矿山,42(11):1-4,138.
[1] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[2] 刘贻玲, 钟一霞. 物质流视角下稀土企业全产业链发展仿真研究[J]. 黄金科学技术, 2023, 31(5): 835-844.
[3] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[4] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[5] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[6] 高峰,吴晓东,周科平. 基于主成分分析和PSO-ELM算法的排土场稳定性预测模型[J]. 黄金科学技术, 2021, 29(5): 658-668.
[7] 廖宝泉,柯愈贤,卿琛,张华熙,黄豪琪,方立发,王成,陶铁军. 基于相对差异函数的金属矿采空区危险性识别[J]. 黄金科学技术, 2021, 29(3): 440-448.
[8] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[9] 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919.
[10] 党明智,张君,贾明涛. 黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J]. 黄金科学技术, 2020, 28(2): 246-254.
[11] 邓红卫,张维友,虞松涛,高宇旭. 基于变权联系云的采空区稳定性二维评价模型[J]. 黄金科学技术, 2020, 28(1): 32-41.
[12] 程力,刘焕新,朱明德,吴钦正. 金属矿山地下采空区问题研究现状与展望[J]. 黄金科学技术, 2020, 28(1): 70-81.
[13] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[14] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[15] 谢学斌,熊胡晨,谢和荣,李建坤,田听雨. 考虑水平荷载的采空区群系统灾变失稳模型[J]. 黄金科学技术, 2019, 27(3): 368-377.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!