img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (3): 440-448.doi: 10.11872/j.issn.1005-2518.2021.03.144

• 采选技术与矿山管理 • 上一篇    下一篇

基于相对差异函数的金属矿采空区危险性识别

廖宝泉1,柯愈贤1(),卿琛2,张华熙1,黄豪琪1,方立发1,王成1,陶铁军1,3   

  1. 1.江西理工大学资源与环境工程学院,江西 赣州 341000
    2.江西理工大学外语外贸学院,江西 赣州 341000
    3.贵州大学土木工程学院,贵阳 贵州 550025
  • 收稿日期:2020-08-05 修回日期:2020-11-02 出版日期:2021-06-30 发布日期:2021-07-14
  • 通讯作者: 柯愈贤 E-mail:keyuxian@jxust.edu.cn
  • 基金资助:
    国家自然科学基金项目“渗流—蠕变耦合作用下全尾砂胶结充填体力学性能演化规律及损伤破坏机制”(51804135);“APAM强化絮网结构后全尾砂料浆流动性能演化机制研究”(51804134);国家大学生创新训练项目“硬岩矿深部膏体充填开采覆岩移动角与移动范围变化规律研究”(201910407004);江西省自然科学基金项目“渗流作用下膏体充填体力学性能演化规律及损伤破坏机制”(20192BAB216017);江西理工大学博士启动基金项目“全尾砂似膏体流变特性与管道输送阻力研究”(jxxjbs17070)

Risk Recognition of Metal Mine Goaf Based on Relative Difference Function

Baoquan LIAO1,Yuxian KE1(),Chen QING2,Huaxi ZHANG1,Haoqi HUANG1,Lifa FANG1,Cheng WANG1,Tiejun TAO1,3   

  1. 1.School of Resources and Environmental Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
    2.Faculty of Foreign Studies,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
    3.College of Civil Engineering,Guizhou University,Guiyang 550025,Guizhou,China
  • Received:2020-08-05 Revised:2020-11-02 Online:2021-06-30 Published:2021-07-14
  • Contact: Yuxian KE E-mail:keyuxian@jxust.edu.cn

摘要:

为了经济合理地治理金属矿采空区,建立了相对差异函数的采空区危险性识别模型。首先建立含14个指标的采空区危险性识别指标体系,并采用相对差异函数确定评价指标对评价级别的相对隶属度和熵权法、层次分析法(AHP)确定评价指标的组合权重;然后计算采空区危险性对评价级别的综合相对隶属度和级别特征值;最后根据级别特征值的平均值确定采空区的危险性级别。将该模型运用于某锡矿山8个采空区的危险性评价识别中,确定了各采空区的危险性级别,识别结果与未确知测度理论法识别结果相一致,符合现场实际。研究结果表明:该模型可通过自身参数的4种组合来提高采空区危险性识别结果的可靠性,为采空区危险性识别提供了一种新的方法。

关键词: 采空区, 危险性识别, 相对差异函数, 相对隶属度, 组合权重, 相关度, 安全性评价

Abstract:

Numerous of underground goaf left by metal mine mining not only bring a series of safety and environmental problems to the society,but also affect the development of mineral resources and the healthy and sustainable development of the national economy.The risk recognition of metal mine underground goaf is an important basis of its treatment,so accurately identify the danger of the goaf has become one of the problems to be solved urgently in the safety supervision of government departments and the safety production of mining enterprises.It has been difficult to accurately recognize metal mine underground goaf risk for many factors will influence the stability of underground goaf,and coexistence of quantitative and qualitative factors,and the existence of contradictions between these factors.In order to accurately identify the risk of metal mines underground goaf and manage the goaf economically and rationally,a risk recognition model of metal mine underground goaf based on relative difference function was established.First,a risk recognition index system of metal mine underground goaf containing 14 indexes was constructed according to the risk factors such as hydrogeological factors,goaf parameters,and other factors.Then the relative membership degree of the indexes to evaluation levels was calculated by relative difference function,and the combined weight of the indexes was determined by entropy weight method and analytical hierarchy process.Afterwards,the comprehensive relative membership degree and level characteristic value of metal mine underground goaf risk to different evaluation levels was calculated under four different combinations of distance parameter and optimization criteria parameter,and the level of metal mine underground goaf risk was then to be determined by the average level characteristic value.Furthermore,the whole process was applied to the risk recognition of eight underground goafs a tin mine and their calculated risk level was grade Ⅱ,grade Ⅱ,grade Ⅱ,grade Ⅰ,grade Ⅲ,grade Ⅰ,grade Ⅲ,grade Ⅰ,grade Ⅲ and grade Ⅰ,respectively.The calculation results fully consistent with the recognition results of uncertainty measurement and also well accordant with the practical situation,it also provides a helpful theoretical basis for the mine’s further treatment of underground goaf and safety production.The results show that the above established risk recognition model can self-verify the recognition results by changing its four combinations of its own parameters (distance parameter and optimization criteria parameter),which reflects the model’s overall control over the essential law of the unity and opposites of evaluation indexes.The model can improve the recognized reliability of underground goaf risk and its identification process is simple and efficient,which provides a new method for underground goaf risk recognition.

Key words: goaf, risk recognition, relative difference function, relative membership degree, combined weight, correlation degree, safety evaluation

中图分类号: 

  • X936

图1

相对差异函数Pl-相对差异函数值域下临界点;Pm-相对差异函数值域中点;Pr-相对差异函数值域上临界点"

图2

采空区危险性识别评价指标体系"

表1

采空区危险性识别的定量评价指标分级标准(杜坤等,2011;宫凤强等,2008)"

指标分级标准
Ⅰ级Ⅱ级Ⅲ级Ⅳ级
岩石质量指标x1/%[0,40](40,50](50,60](60,100]
采空区埋藏深度x6/m(400,200](200,100](100,0]
采空区最大跨度x7/m(120,80](80,40](40,0]
采空区最大高度x8/m(30,20](20,8](8,0]
采空区平均高跨比x9(3,2](2,1](1,0]
采空区面积x10/m2(2 700,1 200](1 200,800](800,0]

表2

采空区危险性识别的定性指标分级与赋值(杜坤等,2011;宫凤强等,2008)"

危险 级别赋值定性指标
地质构造x2

岩体结构

x3

地下可见水

x4

地下水体对围岩的影响x5相邻采空区情况x11矿柱尺寸和布置x12周围的开采影响x13工程布置x14
Ⅰ级[0,1]断层贯穿围岩松散结构长期有淋水围岩受水体影响较大影响范围内采空区面积较大,数量较多,相邻较近且比较集中,为采空区群无矿柱或布置不规范、矿柱已经严重受损受采场作业影响较大不合理
Ⅱ级(1,2]断层部分切割或褶皱影响大碎裂结构雨季有淋水围岩受水体影响影响范围内采空区面积大,数量多,但分布较为分散无矿柱或布置不规范、矿柱开始破坏受采场作业影响大部分合理
Ⅲ级(2,3]褶皱影响小层状结构

围岩可见

水迹

围岩受水体影响较小影响范围内采空区面积一般数量不多,且相邻较近有矿柱,但布置不规范受采场作业影响一般比较合理
Ⅳ级(3,4]无断层、褶皱完整块状结构无淋水水迹围岩周围无水体影响范围内无其他采空区,为孤立空区;或者空区位于6R之外(R为孤立空区半径)有矿柱,且布置规范无采场作业影响合理

表3

采空区危险性识别评价指标调查统计"

采空区编号评价指标特征值
x1x2x3x4x5x6x7x8x9x10x11x12x13x14
1#380.80.82.82.81158515.04.83 1880.80.50.82.8
2#561.21.62.82.8115608.04.63 3350.81.60.84.0
3#350.80.82.82.81456214.52.42 5680.80.50.82.8
4#482.51.22.82.81807322.01.76 0181.50.50.82.8
5#431.20.82.82.82536016.52.63 5421.80.50.83.0
6#471.22.82.82.88316026.31.53 4002.50.51.72.8
7#550.51.23.53.52532615.85.32 6601.82.50.84.0
8#570.52.82.82.8909621.03.45 7291.51.81.54.0

表4

采空区危险性相对差异函数识别结果"

采空区编号H'H危险性级别
α=1,β=1α=2,β=1α=1,β=2α=2,β=2
1#1.9512.0811.5071.6821.806
2#1.7182.3081.5262.0431.899
3#2.0022.1612.3732.2152.188
4#1.4711.6011.0271.2021.326
5#2.9312.9083.0232.8502.928
6#1.2881.8781.0961.6131.469
7#2.8652.8242.4782.5462.678
8#1.4241.4011.5161.3431.421

表5

相对差异函数与未确知测度理论识别结果比较"

方法采空区危险性识别结果来源
1#2#3#4#5#6#7#8#
相对差异 函数本文
未确知测度 理论王纪鹏,2017
Chen Guofang,Yu Zhaoxuan,Zhou Pan,2015.Application of improved matter-element extension model to goaf safety evaluation[J].Nonferrous Metals Science and Engineering,6(4):91-96.
Chen Shouyu,2009.Theory and Model of Variable Fuzzy Sets and Its Application[M].Dalian:Dalian University of Technology Press.
Chen Zhaohui,2018.Safety evaluation of masonry lining tunnels based on relative difference function[J].Journal of East China Jiaotong University,35(4):8-14.
Cheng Qiuting,Deng Fei,Chen Yanhong,al et,2015.Numerical simulation analysis on the stability of mined-out area[J].Nonferrous Metals Science and Engineering,6(2):85-88.
Deng Gao,Yang Shan,2017.Stability evaluation of goafs based on combined forecasting and variable precision rough fuzzy set[J].Gold Science and Technology,25(3):98-107.
Dong L J,Peng G J,Fu Y H,al et,2008.Unascertained measurement classifying model of goaf collapse prediction[J].Journal of Coal Science & Engineering(China),14(2):221-224.
Du Kun,Li Xibing,Liu Kewei,al et,2011.Comprehensive evaluation of underground goaf risk and engineering application [J].Journal of Central South University(Science and Technology),42(9):2802-2811.
FangY H,Zheng X L,Peng H,al et,2019.A new method of the relative membership degree calculation in variable fuzzy sets for water quality assessment[J].Ecological Indicators,98:515-522.
Fu Yuhua,Xiao Guoxi,2012.Multiple indexes identification model for the prediction of goaf collapse[J].Nonferrous Metals Science and Engineering,3(6):61-64.
Geng Hongbo,Ye Yicheng,2018.Study on goaf risk evaluation based on catastrophe progression method[J].Industrial Minerals & Processing,47(12):26-32.
Gong Fengqiang,Li Xibing,Dong Longjun,al et,2008.Underground goaf risk evaluation based on uncertainty measurement theory[J].Journal of Rock Mechanics and Engineering,27(2):323-330.
Hu Hongwang,Ye Yicheng,Geng Hongbo,al et,2018.Study on stability evaluation of layered deposit goaf based on BP neural network [J].Industrial Minerals & Processing,47(3):60-63,69.
Huang S Z,Chang J X,Leng G Y,al et,2015.Integrated index for drought assessment based on variable fuzzy set theory:A case study in the Yellow River basin,China[J].Journal of Hydrology,527:608-618.
Huang Yinghua,Wen Lei,Huang Min,al et,2019.Study on fuzzy evaluation system of the complex goaf stability in metal mine[J].Mining Research and Development,39(12):63-67.
Kong L J,Ma B,2020.Evaluation of environmental impact of construction waste disposal based on fuzzy set analysis[J].Environmental Technology & Innovation,19:100877.
Ma Haitao,Liu Ningwu,Wang Yunhai,al et,2014.Review on research status of controlling techniques for goaf disaster in metal mine[J].Journal of Safety Science and Technology,10(10):75-80.
Qin Y G,Luo Z Q,Wang J,al et,2019.Evaluation of goaf stability based on transfer learning theory of artificial intelligence[J].IEEE Access,7:96912-96925.
Ren Honggang,Tan Zhuoying,Wang Haijun,2016.Comprehensive evaluation of the multi-attribute goaf treatment methods based on set pair analysis and grey correlation theory[J].Nonferrous Metals (Mining Section),68(2):15-20.
Ruan Yunkai,Chen Jianping,Shi Mingyuan,al et,2016.Debris flow susceptibility analysis based on relative difference function and game theory[J].Journal of Northeastern University(Natural Science),37(12):1800-1804.
Wang Jipeng,2017.Clustering analysis of hazard correlation factors for mined-out areas based on principal components[J].Industrial Minerals & Processing,46(2):64-68.
Wang Xinmin,Ke Yuxian,Yan Debo,al et,2012.Underground goaf risk evaluation based on entropy weight and matter element analysis[J].China Safety Science Journal,22(6):71-78.
Wang Zhao,Guo Jinping,Wang Liguan,2015.Recognition of goaf risk based on support vector machines method [J].Journal of Chongqing University,38(4):85-90,127.
Wen Tingxin,Sun Hongjuan,Xu Bo,al et,2015.RS-SVM model for predicting underground goaf collapse risk[J].China Safety Science Journal,25(10):16-21.
Yu Qiang,2019.Evaluation of subway operation safety management based on variable weight and relative difference function[J].Value Engineering,38(3):37-39.
Zhou J,Li X B,Mitri H S,al et,2013.Identification of large-scale goaf instability in underground mine using particle swarm optimization and support vector machine[J].International Journal of Mining Science & Technology,(5):701-707.
陈国芳,于兆绚,周盼,2015.改进物元可拓模型在采空区安全性评价中的应用[J].有色金属科学与工程,6(4):91-96.
陈守煜,2009.可变模糊集理论与模型及其应用[M].大连:大连理工大学出版社.
陈朝辉,2018.基于相对差异函数的砌石隧道安全性评价[J].华东交通大学学报,35(4):8-14.
程秋亭,邓飞,陈艳红,等,2015.采空区稳定性数值模拟分析[J].有色金属科学与工程,6(2):85-88.
邓高,杨珊,2017.基于组合预测与变精度粗糙模糊集的采空区稳定性评价[J].黄金科学技术,25(3):98-107.
杜坤,李夕兵,刘科伟,等,2011.采空区危险性评价的综合方法及工程应用[J].中南大学学报(自然科学版),42(9):2802-2811.
付玉华,肖国喜,2012.采空区塌陷预测的多元识别模型[J].有色金属科学与工程,3(6):61-64.
耿宏波,叶义成,2018.基于突变级数法的采空区危险性评价研究[J].化工矿物与加工,47(12):26-32.
宫凤强,李夕兵,董陇军,等,2008.基于未确知测度理论的采空区危险性评价研究[J].岩石力学与工程学报,27(2):323-330.
胡洪旺,叶义成,耿宏波,等,2018.基于BP神经网络的层状矿床采空区稳定性评价研究[J].化工矿物与加工,47(3):60-63,69.
黄英华,闻磊,黄敏,等,2019.金属矿山复杂采空区稳定性模糊评价体系研究[J].矿业研究与开发,39(12):63-67.
马海涛,刘宁武,王云海,等,2014.金属矿山采空区灾害防治技术研究综述[J].中国安全生产科学技术,10(10):75-80.
任红岗,谭卓英,王海军,2016.基于集对分析—灰色关联理论的采空区处理多属性方案综合评价[J].有色金属(矿山部分),68(2):15-20.
阮云凯,陈剑平,史明远,等,2016.基于相对差异函数和博弈论的泥石流敏感性分析[J].东北大学学报(自然科学版),37(12):1800-1804.
王纪鹏,2017.基于主成分的采空区危险性关联因子聚类分析[J].化工矿物与加工,46(2):64-68.
王新民,柯愈贤,鄢德波,等,2012.基于熵权法和物元分析的采空区危险性评价研究[J].中国安全科学学报,22(6):71-78.
汪朝,郭进平,王李管,2015.采空区危险性的支持向量机识别[J].重庆大学学报,38(4):85-90,127.
温廷新,孙红娟,徐波,等,2015.矿区采空塌陷危险性预测的RS-SVM模型[J].中国安全科学学报,25(10):16-21.
尉强,2019.基于变权和相对差异函数的地铁运营安全管理评价[J].价值工程,38(3):37-39.
[1] 李子永,张利峰,田海川,王旭东. 高密度电阻率法在莱州矿集区环境地质调查中的应用[J]. 黄金科学技术, 2023, 31(1): 78-87.
[2] 李杰林,高乐,杨承业,周科平. 大型复杂采空区群的稳定性数值分析及隐患区域预测[J]. 黄金科学技术, 2022, 30(3): 315-323.
[3] 周科平,曹立雄,李杰林,张玮,杨承业,张孝平,高乐. 复杂采空区群稳定性数值分析及安全分级评价[J]. 黄金科学技术, 2022, 30(3): 324-332.
[4] 邓龙鑫, 陈建宏. 基于博弈论的主客观组合权重TOPSIS采矿方法优选[J]. 黄金科学技术, 2022, 30(2): 282-290.
[5] 叶光祥,黄智群,王晓军,张树标,苑栋. 基于未确知测度理论的石英脉型钨矿山采空区稳定性评价[J]. 黄金科学技术, 2021, 29(3): 433-439.
[6] 王牧帆,罗周全,于琦. 基于 Stacking 模型的采空区稳定性预测[J]. 黄金科学技术, 2020, 28(6): 894-901.
[7] 柯愈贤,王成,方立发,廖宝泉. 基于组合权重和物元分析的矿山安全生产状况研究[J]. 黄金科学技术, 2020, 28(6): 910-919.
[8] 党明智,张君,贾明涛. 黄土坡铜锌矿微震监测技术应用与灾害预警方法研究[J]. 黄金科学技术, 2020, 28(2): 246-254.
[9] 邓红卫,张维友,虞松涛,高宇旭. 基于变权联系云的采空区稳定性二维评价模型[J]. 黄金科学技术, 2020, 28(1): 32-41.
[10] 程力,刘焕新,朱明德,吴钦正. 金属矿山地下采空区问题研究现状与展望[J]. 黄金科学技术, 2020, 28(1): 70-81.
[11] 高远,陈庆发,蒋腾龙. 大新锰矿复杂空区群三维数值模型构建方法及胶结充填治理研究[J]. 黄金科学技术, 2019, 27(6): 851-861.
[12] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[13] 谢学斌,熊胡晨,谢和荣,李建坤,田听雨. 考虑水平荷载的采空区群系统灾变失稳模型[J]. 黄金科学技术, 2019, 27(3): 368-377.
[14] 吕闹,汪海波. 厚硬顶板弱化前后垮落致灾数值模拟研究[J]. 黄金科学技术, 2019, 27(2): 257-264.
[15] 黄仁东,刘赞赞,闫泽正. 基于有限云模型的深基坑安全性研究[J]. 黄金科学技术, 2019, 27(1): 72-79.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!