黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 525-534.doi: 10.11872/j.issn.1005-2518.2021.04.010
Yue JING1(),Shaofeng WANG1,Jintao LU2()
摘要:
非爆机械化开采的可行性与待截割矿体周围松动区的厚度之间有着密切联系,研究待截割矿体周围松动区厚度对于合理进行机械化开采具有重要意义。综合考虑松动区厚度的成因及特点,选取了单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素作为指标。首先利用从多个矿山现场收集的69组数据,建立了松动区厚度的回归预测模型,并通过熵权法评价5个影响因素对于松动区厚度的影响权重;然后根据所得的松动区厚度预测模型对开磷马路坪矿开采现场松动区厚度进行预测,并依此建立了基于矿岩开挖松动区厚度的非爆机械化开采判据;最后对现阶段开磷马路坪矿非爆机械化开采的可行性进行评价。结果表明:本研究得到的基于矿岩开挖松动区厚度的非爆机械化开采判据,可以较好地评判开磷马路坪矿非爆机械化开采的可行性和合理性。
中图分类号:
Alcolea R A,Kuhlmann U,Marschall P,2019.3D modelling of the excavation damaged zone using a Marked Point Process technique[J].Geomechanics for Energy and the Environment,17:29-46. | |
Farahmand K,Diederichs M S,2020.Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels[J].Journal of Rock Mechanics and Geotechnical Engineering,13(1):60-83. | |
Gao C L,Zhou Z Q,Li Z H,al et,2020.Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation[J].Tunnelling and Underground Space Technology,97:103289. | |
Gao Wei,Zheng Yingren,2002.Evolutionary neural network model on predication of loosen zone around roadway[J].Chinese Journal of Rock Mechanics and Engineering,(5):658-661. | |
Han H Y,Fukuda D,Liu H Y,al et,2020.Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress[J].International Journal of Rock Mechanics and Mining Sciences,127:104214. | |
Hu Jun,Wang Kaikai,Xia Zhiguo,2014.Support vector machine (SVM) prediction of roadway surrounding rock loose circle thickness optimized by layered fish[J].Metal Mine,43(11):31-34. | |
Huang Feng,Zhu Hehua,Li Qiushi,al et,2016.Field detection and theoretic analysis of loose circle of rock mass surrounding tunnel[J].Rock and Soil Mechanics,37(Supp.1):145-150. | |
Jiang Quan,Feng Xiating,Su Guoshao,al et,2007.Intelligent back analysis of rock mass parameters for large underground caverns under high earth stress based on EDZ and increment displacement[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.1):2654-2662. | |
Jing Hongwen,Fu Guobin,Guo Zhihong,1999.Measurement and analysis of influential factors of broken zone of deep roadways and study on its control technique[J].Chinese Journal of Rock Mechanics and Engineering,(1):3-5. | |
Li Weili,Wang Lei,Chang Jucai,2011.Calculation and site measurement of surrounding rock released circle base on Hoek-Brown criterion[J].Coal Engineering,(2):97-99. | |
Liu Gang,Xiao Yongzhuo,Zhu Junfu,al et,2021.Overview and prospect on theoretical calculation method of broken rock zone[J].Journal of China Coal Society,46(1):46-56. | |
Ma Rongtian,2006.Experimental study on the thickness of surrounding rock loose zone of roadway[J].Railway Engineering,(11):76-80. | |
Ma Wentao,2007.A predicative study of loosening zones around roadways with least square support vector machines method with optimized parameters[J].Rock and Soil Mechanics,28(Supp.1):460-464. | |
Martini C D,Read R S,Martino J B,1997.Observations of brittle failure around a circular test tunnel[J].International Journal of Rock Mechanics and Mining Sciences,34(7):1065-1073. | |
Martino J B,Chandler N A,2004.Excavation-induced damage studies at the Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1413-1426. | |
Meng Qingbin,Yanqing Men,Yang Yiming,al et,2010.Roadway surrounding rock loose circle supporting theory and testing technology[J].China Mine Engineering,39(3):47-51. | |
Read R S,2004.20 years of excavation response studies at AECL’s Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1251-1275. | |
Sun Xikui,Chang Qingliang,Shi Xianyuan,al et,2016.Thickness measurement and distribution law of loose rings of surrounding rock in large cross section semicircle arch seam gateway[J].Coal Science and Technology,44(11):1-6. | |
Walton G,Lato M,Anschütz H,al et,2015.Non-invasive detection of fractures,fracture zones,and rock damage in a hard rock excavation—Experience from the Äspö Hard Rock Laboratory in Sweden[J].Engineering Geology,196:210-221. | |
Wang S F,Li X B,Yao J R,al et,2019.Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock[J].International Journal of Rock Mechanics and Mining Sciences,122:104063. | |
Wu Qingxing,Chen Jie,Chen Suxia,2012.Sensibility analysis of underground excavation stability based on the Hoek-Brown strength criterion[J].Science Technology and Engineering,12(21):5371-5373,5378. | |
Wu Tao,Dai Jun,Du Meili,al et,2015.Surrounding rock loosing circle test based on acoustic test technology[J].Safety in Coal Mines,46(1):169-172. | |
Xu Guo’an,Jing Hongwen,2005.Study on intelligent prediction of broken rock zone thickness of coal mine roadways[J].Journal of China University of Mining & Technology,(2):23-26. | |
Zhao Guoyan,Liang Weizhang,Wang Shaofeng,al et,2016.Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis[J].Rock and Soil Mechanics,37(Supp.2):273-278,300. | |
高玮,郑颖人,2002.巷道围岩松动圈预测的进化神经网络法[J].岩石力学与工程学报,(5):658-661. | |
胡军,王凯凯,夏治国,2014.分层鱼群优化支持向量机预测巷道围岩松动圈厚度[J].金属矿山,43(11):31-34. | |
黄锋,朱合华,李秋实,等,2016.隧道围岩松动圈的现场测试与理论分析[J].岩土力学,37(增1):145-150. | |
江权,冯夏庭,苏国韶,等,2007.基于松动圈—位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报,(增1):2654-2662. | |
靖洪文,付国彬,郭志宏,1999.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,(1):3-5. | |
李伟利,王磊,常聚才,2011.基于Hoek-Brown准则的围岩松动圈计算及现场测试[J].煤炭工程,(2):97-99. | |
刘刚,肖勇卓,朱俊福,等,2021.围岩松动圈理论计算方法的评述与展望[J].煤炭学报,46(1):46-56. | |
马荣田,2006.巷道围岩松动区厚度的试验研究[J].铁道建筑,(11):76-80. | |
马文涛,2007.参数优化LSSVM的巷道围岩松动圈预测研究[J].岩土力学,28(增1):460-464. | |
孟庆彬,门燕青,杨以明,等,2010.巷道围岩松动圈支护理论及测试技术[J].中国矿山工程,39(3):47-51. | |
孙希奎,常庆粮,施现院,等,2016.大断面半圆拱煤巷围岩松动圈厚度测定及分布规律[J].煤炭科学技术,44(11):1-6. | |
吴清星,陈洁,陈素侠,2012.基于Hoek-Brown强度准则的洞室稳定影响分析[J].科学技术与工程,12(21):5371-5373,5378. | |
吴涛,戴俊,杜美利,等,2015.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,46(1):169-172. | |
许国安,靖洪文,2005.煤矿巷道围岩松动圈智能预测研究[J].中国矿业大学学报,(2):23-26. | |
赵国彦,梁伟章,王少锋,等,2016.基于量纲分析的巷道围岩松动圈预测模型[J].岩土力学,37(增2):273-278,300. |
[1] | 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630. |
[2] | 李炎, 王建国, 魏生云, 李国璋, 胡建, 王志男. 西藏德新铅多金属矿床地球物理与地球化学综合找矿研究[J]. 黄金科学技术, 2024, 32(3): 400-415. |
[3] | 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108. |
[4] | 杨轶男, 胡建华, 周坦, 赵风文, 王牧帆. 基于改进DCNN法的微震信号自动识别模型及应用[J]. 黄金科学技术, 2023, 31(5): 794-802. |
[5] | 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712. |
[6] | 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763. |
[7] | 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448. |
[8] | 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84. |
[9] | 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679. |
[10] | 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748. |
[11] | 王少锋, 李夕兵. 深部硬岩可切割性及非爆机械化破岩实践[J]. 黄金科学技术, 2021, 29(5): 629-636. |
[12] | 刘奇,岑佑华,刘东锐,罗卫兵,徐喜. 基于静态沉降试验的全尾砂浓密技术参数预测[J]. 黄金科学技术, 2021, 29(2): 266-274. |
[13] | 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163. |
[14] | 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760. |
[15] | 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379. |
|