img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 525-534.doi: 10.11872/j.issn.1005-2518.2021.04.010

• 采选技术与矿山管理 • 上一篇    下一篇

矿岩开挖松动区厚度预测及非爆机械化开采判据

景岳1(),王少锋1,鲁金涛2()   

  1. 1.中南大学资源与安全工程学院,湖南 长沙 410083
    2.应急管理部研究中心,北京 100013
  • 收稿日期:2020-12-29 修回日期:2021-04-08 出版日期:2021-08-31 发布日期:2021-10-08
  • 通讯作者: 鲁金涛 E-mail:195511040@csu.edu.cn;lujintao1415@163.com
  • 作者简介:景岳(1995-),男,山东济南人,硕士研究生,从事深部硬岩破裂方面的研究工作。195511040@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目“深部高应力下镐形截齿破岩特性及诱导调控机理”(51904333)

Thickness Prediction of the Excavation Damage Zone and Non-explosive Mechanized Mining Criterion

Yue JING1(),Shaofeng WANG1,Jintao LU2()   

  1. 1.School of Resource and Safety Engineering,Central South University,Changsha 410083,Hunan,China
    2.Research Center of the Ministry of Emergency Management,Beijing 100013,China
  • Received:2020-12-29 Revised:2021-04-08 Online:2021-08-31 Published:2021-10-08
  • Contact: Jintao LU E-mail:195511040@csu.edu.cn;lujintao1415@163.com

摘要:

非爆机械化开采的可行性与待截割矿体周围松动区的厚度之间有着密切联系,研究待截割矿体周围松动区厚度对于合理进行机械化开采具有重要意义。综合考虑松动区厚度的成因及特点,选取了单轴抗压强度、岩体质量等级、埋深、岩石容重和开挖跨度5个影响因素作为指标。首先利用从多个矿山现场收集的69组数据,建立了松动区厚度的回归预测模型,并通过熵权法评价5个影响因素对于松动区厚度的影响权重;然后根据所得的松动区厚度预测模型对开磷马路坪矿开采现场松动区厚度进行预测,并依此建立了基于矿岩开挖松动区厚度的非爆机械化开采判据;最后对现阶段开磷马路坪矿非爆机械化开采的可行性进行评价。结果表明:本研究得到的基于矿岩开挖松动区厚度的非爆机械化开采判据,可以较好地评判开磷马路坪矿非爆机械化开采的可行性和合理性。

关键词: 深部开采, 开挖松动区, 非爆机械化开采, 回归分析, 熵权法, 开采判据

Abstract:

Deep mining has gradually become a new trend in underground mining,and the non-explosive mechanized mining method,as one of the alternatives to conventional drilling and blasting excavation,has shown great advantages in rock-breaking efficiency and safety.Non-explosive mechanized mining of hard rock mines is a technical problem that needs to be solved to realize continuous mining and safe,efficient and green development of deep resources in hard rock mines.In the roadway excavation,the initial stress state of the surrounding rock is destroyed to form a secondary stress field resulting in the phenomenon of stress concentration,which will form a “crushing zone” around the surrounding rock,called the excavation damage zone (EDZ).The feasibility of non-explosive mechanized mining is closely related to the thickness of the EDZ around the ore to be cut.The existing research shows that the thickness of the EDZ is mainly affected by rock properties,ground stress,geological conditions and excavation parameters and other factors.So in this paper,the characteristics of the EDZ thickness were considered comprehensively,and five influencing factors of uniaxial compression strength,rock mass grade,burial depth,rock bulk and excavation span were selected.Through multiple regression analysis,using 69 sets of data collected at multiple mine sites,a functional relationship between the thickness of the EDZ and five influencing factors was established,so as to obtain the prediction model of the thickness of the EDZ.The results were obtained by comparing the measured data of the EDZ thickness with the prediction values obtained from the EDZ thickness prediction model.The high determination coefficient and the low root mean squared error show that the established EDZ thickness prediction model and the non-explosive mechanized mining criterion have good reliability.In addition,the weights of the five influencing factors on the thickness of the EDZ were evaluated by the entropy weight method and ranked in order.The results show that the uniaxial compressive strength has the largest influence on the thickness of the EDZ,the rock mass grade has the smallest influence on the thickness of the EDZ,and the burial depth,rock bulk density,and excavation span have increasing influence on the thickness of the EDZ.The regression prediction model can better predict the thickness of the EDZ at Kailin Maluping mine,and the predicted value meets the requirements of non-explosive mechanized mining,verifying the feasibility and rationality of non-explosive mechanized mining.

Key words: deep mining, excavation damage zone, non-explosive mechanized mining, regression analysis, entropy weight method, mining criterion

中图分类号: 

  • TD80

表1

矿山现场测试数据"

序号单轴抗压强度σc/MPa岩体质量等级F埋深H/m

岩石容重

γ/(kN·m-3

开挖跨度S/m松动区厚度L/m序号单轴抗压强度σc/MPa岩体质量等级F

埋深

H/m

岩石容重γ/(kN·m-3开挖跨度S/m松动区厚度L/m
110.503.037028.83.51.0003622.403.561027.33.61.750
210.104.030531.03.21.3003721.964.562026.13.62.120
39.104.042027.53.21.4003825.644.064026.93.61.980
410.503.035029.43.21.2003921.964.566025.43.62.200
512.604.051025.93.71.4004025.643.061527.13.61.500
612.603.040327.92.91.3004116.804.567024.63.62.350
711.903.029331.53.51.1004225.643.068527.33.61.700
813.304.041027.83.21.4004316.804.570023.43.62.550
911.203.045026.93.01.2004425.643.567528.43.82.100
1062.402.036229.02.60.6004516.805.070523.13.82.850
1111.203.031530.62.81.1004625.643.070028.43.81.780
12101.601.046026.73.20.4004716.805.065024.26.03.450
1313.303.012529.32.81.1004825.644.568028.33.82.350
1428.003.031030.83.20.8004921.965.063026.34.02.600
1518.803.034029.73.41.3005052.003.070028.44.21.700
1610.904.066524.13.61.7005152.003.075028.44.21.700
1714.304.032230.34.41.5005252.003.069028.44.21.400
189.105.045026.93.42.0005352.003.069028.44.61.500
1916.803.024923.93.21.0005440.003.069024.64.61.600
2022.403.029631.43.41.2005525.643.061528.33.61.500
2123.803.017830.12.61.2005616.804.567024.23.62.350
2211.964.026824.83.41.4005725.643.068528.33.61.700
23110.201.018029.82.81.0005834.374.066027.24.51.650
2414.303.023624.73.01.20059147.895.066032.34.02.340
2513.303.032130.43.01.1006071.263.060027.13.81.100
2611.203.09728.32.61.1006139.193.01 00028.64.61.930
2773.602.034029.73.00.80062158.835.080028.15.62.900
2813.304.045026.93.61.60063147.894.080032.25.62.690
2932.202.034029.73.20.70064109.503.080026.75.62.270
3010.105.047026.54.02.20065142.163.037031.13.41.200
3114.303.042027.53.61.10066142.163.045031.13.41.400
3211.904.052025.83.81.70067142.163.053031.13.41.550
339.105.047026.53.62.10068142.163.068031.13.41.800
3410.104.046726.63.41.80069142.163.078031.13.41.975
3516.804.560025.43.62.250

图1

松动区厚度回归预测模型"

图2

现场测试值与预测值散点对比图"

表2

松动区厚度影响因素权重"

影响因素权重
单轴抗压强度σc0.5865
岩体质量等级F0.0607
埋深H0.0929
岩石容重γ0.1024
开挖跨度S0.1574

图3

监测孔布置图"

图4

监测及连接设备a-钻孔电视;b-钻孔摄像头;c-连接螺母;d-金属连接杆;e-位移罗盘;f-摄像头连接线;g-位移罗盘连接线;h-摄像头连接头;i-摄像头连接插头;j-位移罗盘连接插头"

图5

现场监测"

表3

监测孔松动区测量数据"

孔号钻孔与水平面夹角θ/(°)钻孔中松动区位置L1/m钻孔后矿岩垮落厚度L2/m松动区实际厚度L3/m松动区平均厚度L4/m
103.260.153.41(舍去)2.33 (左侧:1号~6号孔)
202.560.102.66
302.700.052.75
401.990.122.11
502.100.132.23
601.660.261.92
702.650.072.722.49 (外侧:7号~12号孔)
802.150.162.31
902.330.022.35
1002.440.182.62
1101.850.472.32
1202.220.392.61
1302.400.052.452.69 (右侧:13号~18号孔)
1402.700.062.76
1502.650.132.78
1602.670.122.79
1702.6802.68
1803.030.133.16(舍去)

表4

监测孔基础数据"

孔号单轴抗压强度σc/MPa岩体质量等级F埋深H/m岩石容重γ/(kN·m-3开挖跨度S/m平均开挖跨度S/m
1147.89449027.0484.945.06 (左侧:1号~6号孔)
2147.89449027.0485.21
3147.89449027.0485.03
4147.89449027.0484.94
5147.89449027.0485.21
6147.89449027.0485.03
7147.89449027.0484.494.95 (外侧:7号~12号孔)
8147.89449027.0485.46
9147.89449027.0484.89
10147.89449027.0484.49
11147.89449027.0485.46
12147.89449027.0484.89
13147.89449027.0485.854.95 (右侧:13号~18号孔)
14147.89449027.0484.81
15147.89449027.0484.20
16147.89449027.0485.85
17147.89449027.0484.81
18147.89449027.0484.20
Alcolea R A,Kuhlmann U,Marschall P,2019.3D modelling of the excavation damaged zone using a Marked Point Process technique[J].Geomechanics for Energy and the Environment,17:29-46.
Farahmand K,Diederichs M S,2020.Calibration of coupled hydro-mechanical properties of grain-based model for simulating fracture process and associated pore pressure evolution in excavation damage zone around deep tunnels[J].Journal of Rock Mechanics and Geotechnical Engineering,13(1):60-83.
Gao C L,Zhou Z Q,Li Z H,al et,2020.Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation[J].Tunnelling and Underground Space Technology,97:103289.
Gao Wei,Zheng Yingren,2002.Evolutionary neural network model on predication of loosen zone around roadway[J].Chinese Journal of Rock Mechanics and Engineering,(5):658-661.
Han H Y,Fukuda D,Liu H Y,al et,2020.Combined finite-discrete element modelling of rock fracture and fragmentation induced by contour blasting during tunnelling with high horizontal in-situ stress[J].International Journal of Rock Mechanics and Mining Sciences,127:104214.
Hu Jun,Wang Kaikai,Xia Zhiguo,2014.Support vector machine (SVM) prediction of roadway surrounding rock loose circle thickness optimized by layered fish[J].Metal Mine,43(11):31-34.
Huang Feng,Zhu Hehua,Li Qiushi,al et,2016.Field detection and theoretic analysis of loose circle of rock mass surrounding tunnel[J].Rock and Soil Mechanics,37(Supp.1):145-150.
Jiang Quan,Feng Xiating,Su Guoshao,al et,2007.Intelligent back analysis of rock mass parameters for large underground caverns under high earth stress based on EDZ and increment displacement[J].Chinese Journal of Rock Mechanics and Engineering,(Supp.1):2654-2662.
Jing Hongwen,Fu Guobin,Guo Zhihong,1999.Measurement and analysis of influential factors of broken zone of deep roadways and study on its control technique[J].Chinese Journal of Rock Mechanics and Engineering,(1):3-5.
Li Weili,Wang Lei,Chang Jucai,2011.Calculation and site measurement of surrounding rock released circle base on Hoek-Brown criterion[J].Coal Engineering,(2):97-99.
Liu Gang,Xiao Yongzhuo,Zhu Junfu,al et,2021.Overview and prospect on theoretical calculation method of broken rock zone[J].Journal of China Coal Society,46(1):46-56.
Ma Rongtian,2006.Experimental study on the thickness of surrounding rock loose zone of roadway[J].Railway Engineering,(11):76-80.
Ma Wentao,2007.A predicative study of loosening zones around roadways with least square support vector machines method with optimized parameters[J].Rock and Soil Mechanics,28(Supp.1):460-464.
Martini C D,Read R S,Martino J B,1997.Observations of brittle failure around a circular test tunnel[J].International Journal of Rock Mechanics and Mining Sciences,34(7):1065-1073.
Martino J B,Chandler N A,2004.Excavation-induced damage studies at the Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1413-1426.
Meng Qingbin,Yanqing Men,Yang Yiming,al et,2010.Roadway surrounding rock loose circle supporting theory and testing technology[J].China Mine Engineering,39(3):47-51.
Read R S,2004.20 years of excavation response studies at AECL’s Underground Research Laboratory[J].International Journal of Rock Mechanics and Mining Sciences,41(8):1251-1275.
Sun Xikui,Chang Qingliang,Shi Xianyuan,al et,2016.Thickness measurement and distribution law of loose rings of surrounding rock in large cross section semicircle arch seam gateway[J].Coal Science and Technology,44(11):1-6.
Walton G,Lato M,Anschütz H,al et,2015.Non-invasive detection of fractures,fracture zones,and rock damage in a hard rock excavation—Experience from the Äspö Hard Rock Laboratory in Sweden[J].Engineering Geology,196:210-221.
Wang S F,Li X B,Yao J R,al et,2019.Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock[J].International Journal of Rock Mechanics and Mining Sciences,122:104063.
Wu Qingxing,Chen Jie,Chen Suxia,2012.Sensibility analysis of underground excavation stability based on the Hoek-Brown strength criterion[J].Science Technology and Engineering,12(21):5371-5373,5378.
Wu Tao,Dai Jun,Du Meili,al et,2015.Surrounding rock loosing circle test based on acoustic test technology[J].Safety in Coal Mines,46(1):169-172.
Xu Guo’an,Jing Hongwen,2005.Study on intelligent prediction of broken rock zone thickness of coal mine roadways[J].Journal of China University of Mining & Technology,(2):23-26.
Zhao Guoyan,Liang Weizhang,Wang Shaofeng,al et,2016.Prediction model for extent of excavation damaged zone around roadway based on dimensional analysis[J].Rock and Soil Mechanics,37(Supp.2):273-278,300.
高玮,郑颖人,2002.巷道围岩松动圈预测的进化神经网络法[J].岩石力学与工程学报,(5):658-661.
胡军,王凯凯,夏治国,2014.分层鱼群优化支持向量机预测巷道围岩松动圈厚度[J].金属矿山,43(11):31-34.
黄锋,朱合华,李秋实,等,2016.隧道围岩松动圈的现场测试与理论分析[J].岩土力学,37(增1):145-150.
江权,冯夏庭,苏国韶,等,2007.基于松动圈—位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报,(增1):2654-2662.
靖洪文,付国彬,郭志宏,1999.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,(1):3-5.
李伟利,王磊,常聚才,2011.基于Hoek-Brown准则的围岩松动圈计算及现场测试[J].煤炭工程,(2):97-99.
刘刚,肖勇卓,朱俊福,等,2021.围岩松动圈理论计算方法的评述与展望[J].煤炭学报,46(1):46-56.
马荣田,2006.巷道围岩松动区厚度的试验研究[J].铁道建筑,(11):76-80.
马文涛,2007.参数优化LSSVM的巷道围岩松动圈预测研究[J].岩土力学,28(增1):460-464.
孟庆彬,门燕青,杨以明,等,2010.巷道围岩松动圈支护理论及测试技术[J].中国矿山工程,39(3):47-51.
孙希奎,常庆粮,施现院,等,2016.大断面半圆拱煤巷围岩松动圈厚度测定及分布规律[J].煤炭科学技术,44(11):1-6.
吴清星,陈洁,陈素侠,2012.基于Hoek-Brown强度准则的洞室稳定影响分析[J].科学技术与工程,12(21):5371-5373,5378.
吴涛,戴俊,杜美利,等,2015.基于声波法测试技术的巷道围岩松动圈测定[J].煤矿安全,46(1):169-172.
许国安,靖洪文,2005.煤矿巷道围岩松动圈智能预测研究[J].中国矿业大学学报,(2):23-26.
赵国彦,梁伟章,王少锋,等,2016.基于量纲分析的巷道围岩松动圈预测模型[J].岩土力学,37(增2):273-278,300.
[1] 李振阳, 张宝岗, 熊信, 杨承业, 白玉奇. 基于PSO-XGBoost的露天矿山PPV预测模型研究[J]. 黄金科学技术, 2024, 32(4): 620-630.
[2] 李炎, 王建国, 魏生云, 李国璋, 胡建, 王志男. 西藏德新铅多金属矿床地球物理与地球化学综合找矿研究[J]. 黄金科学技术, 2024, 32(3): 400-415.
[3] 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108.
[4] 杨轶男, 胡建华, 周坦, 赵风文, 王牧帆. 基于改进DCNN法的微震信号自动识别模型及应用[J]. 黄金科学技术, 2023, 31(5): 794-802.
[5] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[6] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[7] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[8] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[9] 唐宇,王少锋. 单向受限应力下镐型截齿破岩特性及其影响因素分析[J]. 黄金科学技术, 2021, 29(5): 669-679.
[10] 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748.
[11] 王少锋, 李夕兵. 深部硬岩可切割性及非爆机械化破岩实践[J]. 黄金科学技术, 2021, 29(5): 629-636.
[12] 刘奇,岑佑华,刘东锐,罗卫兵,徐喜. 基于静态沉降试验的全尾砂浓密技术参数预测[J]. 黄金科学技术, 2021, 29(2): 266-274.
[13] 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163.
[14] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[15] 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!