img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 535-544.doi: 10.11872/j.issn.1005-2518.2021.04.150

• 采选技术与矿山管理 • 上一篇    下一篇

滨海矿区地应力与岩石力学参数随埋深的变化规律及其相互关系

王玺1(),马春德2,刘兴全1,姜明伟1,范玉赟1   

  1. 1.山东黄金集团有限公司深井开采实验室,山东 莱州 261400
    2.中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-08-13 修回日期:2021-05-25 出版日期:2021-08-31 发布日期:2021-10-08
  • 作者简介:王玺(1989-),男,山东曲阜人,工程师,从事矿山深部开采灾害防治研究工作。 wx140924@126.com
  • 基金资助:
    山东省重大科技创新项目“深部金属矿智能化开采关键技术及装备集成研究与工程应用”(2019SDZY05)

The Variation Law of In-situ Stress and Rock Mechanical Parameters with Buried Depth in Coastal Mining Area and Their Relationship

Xi WANG1(),Chunde MA2,Xingquan LIU1,Mingwei JIANG1,Yuyun FAN1   

  1. 1.Deep Well Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Laizhou 261400,Shandong,China
    2.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-08-13 Revised:2021-05-25 Online:2021-08-31 Published:2021-10-08

摘要:

三山岛金矿西岭矿区是我国首个进行滨海开采的金属矿区,研究埋深对该区域地应力和岩石力学性质的影响,对于滨海岩石工程开挖设计及灾害防控具有重要意义。通过对该矿区3个地质钻孔ZK88-21、ZK88-14和ZK94-2的不同埋深岩芯进行取样,获取埋深300~1 900 m范围内的岩石标准试样。采用MTS815和声发射系统测试不同埋深岩石的力学参数与不同方向的声发射Kaiser效应点,进而获得不同埋深岩石的力学参数和地应力特征。以此为基础,分析滨海矿区不同埋深地应力、岩石力学参数及其之间的相互关系。结果表明:随着埋深的增加,滨海矿区岩石力学参数、自重应力、垂直应力、最大水平应力和最小水平应力均呈近似对数函数趋势增加,垂直应力的增幅逐渐小于自重应力。岩石力学参数与地应力大致呈对数关系,最大水平应力对岩石力学参数的影响大于最小主应力。埋深对岩石抗拉强度的影响大于其对抗压强度的影响。

关键词: 滨海矿区, 埋深, 地质钻孔, 地应力, 岩石力学参数, 西岭矿区

Abstract:

The Xiling mining area in Sanshandao gold mine is the first coastal metal mining area in China.Therefore,it is of great significance for coastal rock engineering excavation design and disaster control to study the effect of the buried depth on in-situ stress,rock mechanical properties and their relationship.For this purpose,the standard rock specimen at 5 different buried depths ranging from 300 m to 1 900 m were taken from the three geological drilling in this mining area,namely ZK88-21,ZK88-14 and ZK94-2.With the aid of MTS815,the mechanical parameters and acoustic emission Kaiser point in different directions of rock at different buried depths were tested,and the mechanical properties and in-situ stress of rocks were further obtained.On this basis,the in-situ stress,rock mechanics parameters and their interrelationships at different buried depths were analyzed.The results show that the mechanics parameters,self-weight stress,vertical stress,maximum horizontal stress and minimum horizontal stress have a logarithmic relationship with the buried depth,and the increase amplitude of vertical stress is gradually smaller than that of the self-weight stress with the increase of the buried depth.Similarly,the rock mechanics parameters are roughly logarithmic to the in-situ stress.Among them,the effect of the maximum horizontal stress on the rock mechanical parameters is greater than that of the minimum principal stress.In addition,the effect of buried depth on the tensile strength is greater than its effect on the compressive strength.

Key words: coastal mining area, buried depth, geological drilling, in-situ stress, rock mechanical parameters, Xiling mining area

中图分类号: 

  • TU452

图1

滨海开采的工程地质现象"

图2

典型地质钻孔信息与岩石试样获取过程"

图3

声发射信号采集与试件加载"

图4

不同钻孔岩芯试样的声发射Kaiser效应突变点判断方法(a)岩芯裂隙发育时的Kaiser效应突变点判断方法;(b)受节理裂隙影响,2次加载难以判断Kaiser效应突变点时的Kaiser效应突变点判断方法;(c)岩石Kaiser效应突变点对应的应力会接近并超过岩石单轴抗压强度时的Kaiser效应突变点判断方法"

表1

各钻孔不同埋深测试点地应力情况"

钻孔编号H/mσv/MPaσ/MPa水平方向Kaiser效应突变点应力值/MPaσH/MPaσh/MPa
0°(σ45°(σ90°(σ
ZK94-2钻孔3007.998.1010.5913.4620.6221.0610.15
60016.5516.212.8615.4728.1029.6011.36
90024.9124.313.9814.5931.1134.2412.85
1 20033.2332.417.1922.0135.0335.9316.29
1 50039.3439.2118.0125.2338.6539.1917.47
1 60043.5043.219.7730.3244.2144.3219.66
ZK88-21钻孔3007.978.19.8013.1819.7720.039.55
60017.0516.2314.1216.4128.4329.9214.26
90023.2024.3516.1415.4032.0635.9014.95
1 20033.4932.4717.9622.4634.9735.8617.07
1 50040.7040.5217.4727.2240.4340.5617.34
1 80044.9042.9417.5229.3142.6242.7017.44
1 90046.7043.0117.6129.7242.9343.9317.61
ZK88-14钻孔3007.658.1011.8315.5920.7320.7811.78
60015.6516.2011.7811.8233.4526.4112.62
90024.7124.3015.7514.9836.8036.3012.31
1 20032.1232.4020.0526.2043.5436.8018.79
1 50041.8240.5020.7422.6244.8942.6317.01

图5

垂直应力与埋深的关系"

图6

最大水平主应力与埋深的关系"

图7

最小水平主应力与埋深的关系"

图8

不同埋深岩芯的单轴压缩应力—应变曲线"

图9

岩石的弹性模量(a)与抗压强度(b)随埋深的变化规律"

表2

不同埋深岩芯的力学参数"

钻孔编号h/m样品编号弹性模量E/GPa抗压强度σc/MPa抗拉强度σb/MPa钻孔编号h/m样品编号弹性模量E/GPa抗压强度σc/MPa抗拉强度σb/MPa
ZK88-14300300-135.5145.38.2ZK94-21 5001500-137.2190.613.7
300-231.3143.27.31500-239.3193.515.1
300-329.4138.66.51500-341.2204.116.2
600600-131.0147.89.21 6001600-141.3207.315.6
600-234.2152.99.71600-239.0195.815.9
600-337.8163.28.81600-347.5210.617.8
900900-132.0107.69.2ZK88-21300300-126.2112.35.4
900-237.2117.39.8300-229.7115.46.7
900-338.5120.611.3300-331.2120.38.5
1 2001200-140.0139.713.2600600-135.8146.55.7
1200-243.4145.614.7600-227.8142.15.8
1200-332.6130.511.7600-339.7157.26.3
1 5001500-140.1143.614.3900900-131.2155.75.4
1500-238.1140.212.2900-235.7162.86.9
1500-341.3150.315.3900-340.2171.98.1
ZK94-2300300-127.077.35.91 2001200-132.2206.87.3
300-231.779.36.81200-236.8198.85.1
300-336.386.67.51200-341.7221.47.6
600600-130.2143.28.61 5001500-132.8213.48.5
600-235.3152.410.11500-243.5238.99.3
600-340.2163.29.81500-336.1243.212.4
900900-139.1136.510.31 8001800-144.2261.213.4
900-232.4125.69.21800-235.2242.79.1
900-342.3144.310.11800-345.1271.215.2
1 2001200-132.2168.111.61 9001900-142.2287.311.2
1200-238.6190.312.71900-245.4264.79.4
1200-343.2201.614.21900-335.5252.38.8

图10

不同埋深岩芯的拉伸应力—应变曲线注:图例“300-1”表示样品编号,其中“300”表示埋深为300 m,其他依此类推"

图11

不同埋深岩芯的抗拉强度曲线"

图12

地应力与岩石力学参数的关系"

Baptista R,Infante V,Branco C M,2008.Study of the fatigue behavior in welded joints of stainless steels treated by weld toe grinding and subjected to salt water corrosion[J].International Journal of Fatigue,30(3):453-462.
Bi Yewu,Pu Wenlong,2014.Large deformation mechanism and control countermeasure research of deep high stress roadway[J].Journal of Liaoning Technical University(Natural Science),33(10):1321-1325.
Jiang Chenguang,Jiang Zubin,Liu Hua,al et,2004.Study on the relationship between granite rock mechanical parameters and rock depth[J].Stone,(7):4-6.
Jing Feng,Sheng Qian,Yu Meiwan,2010.The change rule of the geostress and the elastic modulus of rock with depth and their mutual impact[C]//Proceedings of the 11th National Conference on Rock Mechanics and Engineering.Beijing:Chinese Society of Rock Mechanics and Engineering:69-74.
Li Guangyi,Bai Shiwei,1979.In-situ study on stress in rock mass[J].Rock and Soil Mechanics,(1):80-94.
Li Xibing,Huang Linqi,Zhou Jian,al et,2019.Review and prospect of hard rock mine mining technology[J].The Chinese Journal of Nonferrous Metals,29(9):1828-1847.
Li Xibing,Li Diyuan,Guo Lei,al et,2007.Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance[J].Chinese Journal of Rock Mechanics and Engineering,26(5):922-928.
Lin Bin,Xu Dong,2017.Study on the variation law of deep rock mechanics parameters with the occurrence depth[J].Journal of Anhui University of Science and Technology (Natural Science Edition),37(6):56-63.
Luo Chaowen,Li Haibo,Liu Yaqun,2010.Study of distributing characteristics of stress in surrounding rock masses and in-situ stress measurement for deeply buried tunnels[J].Chinese Journal of Rock Mechanics and Engineering,29(7):1418-1423.
Ma F S,Yang Y S,Yuan R M,al et,2007.Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry[J].Environmental Geology,51(1):1009-1017.
Man Ke,2011.Influence of occurrence depth on dynamic fracture toughness of rock[J].Metal Mine,(3):19-21.
Man Ke,Zhou Hongwei,2010.Research on dynamic fracture toughness and tensile strength of rock at different depths[J].Chinese Journal of Rock Mechanics and Engineering,29(8):1657-1663.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2013.Engineering Rock Mass Test Method Standard:[S].Beijing:China Planning Press.
Peng K,Li X B,Wang Z W,2015.Hydrochemical characteristics of groundwater movement and evolution in the Xinli deposit of the Sanshandao gold mine using FCM and PCA methods[J].Environmental Earth Sciences,73(12):7873-7888.
Peng K,Liu Z,Zou Q L,al et,2019.Static and dynamic mechanical properties of granite from various burial depths[J].Rock Mechanics and Rock Engineering,52(10):3545-3566.
Wu Yanqing,2000.Research on the law of rock porosity varying with formation depth[J].Journal of Xi’an University of Technology,16(1):69-73.
Yan Peng,Chen Tuo,Lu Wenbo,al et,2018.A review of dynamic mechanism and controlling of rockburst[J]. Engineering Journal of Wuhan University,51(1):1-14.
Zhou Hongwei,Xie Heping,Zuo Jianping,al et,2010.Experimental research on the influence of occurrence depth on rock mechanical parameters[J].Chinese Science Bulletin,55(34):3276-3284.
Zuo Jianping,Chai Nengbin,Zhou Hongwei,2011.Study on the effect of buried depth on failure and energy characteristics of the basalt[J].Chinese Journal of Underground Space and Engineering,7(6):1174-1180.
毕业武,蒲文龙,2014.深部高应力巷道大变形机理与控制对策[J].辽宁工程技术大学学报(自然科学版),33(10):1321-1325.
姜晨光,姜祖彬,刘华,等,2004.花岗岩岩石力学参数与岩体赋存深度关系的研究[J].石材,(7):4-6.
景锋,盛谦,余美万,2010.地应力与岩石弹性模量随埋深变化及相互影响[C]//第十一次全国岩石力学与工程学术大会论文集.北京:中国岩石力学与工程学会:69-74.
李光煜,白世伟,1979.岩体应力的现场研究[J].岩土力学,(1):80-94.
李夕兵,黄麟淇,周健,等,2019.硬岩矿山开采技术回顾与展望[J].中国有色金属学报,29(9):1828-1847.
李夕兵,李地元,郭雷,等,2007.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,26(5):922-928.
林斌,徐冬,2017.深部岩石力学参数随赋存深度变化规律研究[J].安徽理工大学学报(自然科学版),37(6):56-63.
罗超文,李海波,刘亚群,2010.深埋巷道地应力测量及围岩应力分布特征研究[J].岩石力学与工程学报,29(7):1418-1423.
满轲,2011.赋存深度对岩石动态断裂韧性的影响[J].金属矿山,(3):19-21.
满轲,周宏伟,2010.不同赋存深度岩石的动态断裂韧性与拉伸强度研究[J].岩石力学与工程学报,29(8):1657-1663.
仵彦卿,2000.岩石孔隙率随地层深度变化规律研究[J].西安理工大学学报,16(1):69-73.
严鹏,陈拓,卢文波,等,2018.岩爆动力学机理及其控制研究进展[J].武汉大学学报(工学版),51(1):1-14.
中华人民共和国住房和城乡建设部,2013.工程岩体试验方法标准:[S].北京: 中国计划出版社.
周宏伟,谢和平,左建平,等,2010.赋存深度对岩石力学参数影响的实验研究[J].科学通报,55(34):3276-3284.
左建平,柴能斌,周宏伟,2011.赋存深度对玄武岩变形破坏及能量特征的影响研究[J].地下空间与工程学报,7(6):1174-1180.
[1] 李波, 温晨, 史秀志. 高应力扇形中深孔采场边帮控制爆破参数优化[J]. 黄金科学技术, 2024, 32(3): 511-522.
[2] 凡兴禹, 王雪林. 基于改进XGBoost算法的深部巷道松动圈智能预测研究[J]. 黄金科学技术, 2024, 32(1): 109-122.
[3] 李光,马凤山,郭捷,邹龙,寇永渊. 金川二矿区地应力特征及其对巷道变形破坏的影响研究[J]. 黄金科学技术, 2021, 29(6): 817-825.
[4] 金鹏,刘科伟,李旭东,杨家彩. 深部岩体水耦合爆破裂纹扩展数值模拟研究[J]. 黄金科学技术, 2021, 29(1): 108-119.
[5] 马春德, 刘泽霖, 谢伟斌, 魏新傲, 赵新浩, 龙珊. 套孔应力解除法与声发射法在新城矿区深部地应力测量中的对比研究[J]. 黄金科学技术, 2020, 28(3): 401-410.
[6] 李光,马凤山,郭捷,赵海军,寇永渊,兰剑,赵金田. 高地应力破碎围岩巷道变形破坏特征及支护方式研究[J]. 黄金科学技术, 2020, 28(2): 238-245.
[7] 费鸿禄,刘雨,钱起飞,苏强,孙晓宇. 地应力作用下偏心装药的炮孔裂隙分布[J]. 黄金科学技术, 2020, 28(2): 228-237.
[8] 谢也真,曹平,陈昊然. 滥泥坪铜矿三维地应力测量及巷道布置优化研究[J]. 黄金科学技术, 2019, 27(6): 862-870.
[9] 王卫华,孙腾飞,刘希涛. 基于地应力和二次损伤的预留光爆层爆破参数研究[J]. 黄金科学技术, 2019, 27(4): 565-572.
[10] 杨仕教,王志会. 上覆公路浅埋采空区群稳定性数值模拟[J]. 黄金科学技术, 2019, 27(4): 505-512.
[11] 李萧翰,刘科伟,杨家彩,李旭东. 不同地应力下爆破振动效应分析[J]. 黄金科学技术, 2019, 27(2): 241-248.
[12] 刘连生,兰德沛,张声辉,潘荣森,蔡建德 . 频分多址盲炮检测技术与系统在深孔爆破中的应用研究[J]. 黄金科学技术, 2017, 25(2): 54-61.
[13] 铁柱,朝宝楞,纪主. 图古日格金矿地应力测量与分析[J]. 黄金科学技术, 2014, 22(6): 73-76.
[14] 聂胜陆,曹洪征. 那林金矿地应力与井巷稳固性的关系探讨[J]. J4, 2010, 18(6): 65-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!