img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 555-563.doi: 10.11872/j.issn.1005-2518.2021.04.213

• 采选技术与矿山管理 • 上一篇    下一篇

单轴压缩下充填体损伤本构模型研究

靳少博(),刘科伟(),黄进,靳绍虎   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-12-09 修回日期:2021-03-15 出版日期:2021-08-31 发布日期:2021-10-08
  • 通讯作者: 刘科伟 E-mail:jinshaobo@csu.edu.cn;kewei_liu@126.com
  • 作者简介:靳少博(1990-),男,河北石家庄人,硕士研究生,从事损伤力学方面的研究工作。jinshaobo@csu.edu.cn
  • 基金资助:
    湖南省自然科学基金项目“爆破荷载下应力波空间变化特性与结构响应机理研究”(2018JJ3656)

Study on Damage Constitutive Model of Backfill Under Uniaxial Compression Loading

Shaobo JIN(),Kewei LIU(),Jin HUANG,Shaohu JIN   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-12-09 Revised:2021-03-15 Online:2021-08-31 Published:2021-10-08
  • Contact: Kewei LIU E-mail:jinshaobo@csu.edu.cn;kewei_liu@126.com

摘要:

为了揭示充填体材料在单轴荷载下的损伤机理,首先对充填体材料在单轴荷载下的应力—应变曲线进行分析,再以损伤变量作为影响充填体材料力学特性的内变量,基于统计损伤理论、最大拉应力准则和应变等效假说,推导了充填体材料在单轴荷载下的经典损伤本构模型。由于充填体试件在初始阶段存在压密过程,提出了压密系数并将其引入到经典损伤本构模型,弥补了经典损伤本构模型无法合理解释充填体压密过程的缺陷。采用修正损伤本构模型对几种不同试验数据进行拟合,并与经典损伤本构模型进行对比,结果表明:拟合曲线不仅能够较好地模拟充填体试件在初始加载阶段的压密过程,而且拟合曲线与应力—应变试验数据基本吻合,充分说明所建立的修正损伤本构模型可靠性较好。为了进一步研究拟合参数变化对拟合曲线形状的影响,采用控制变量法改变其中一个参数,结果表明不同类型的拟合参数会对拟合曲线的形状产生不同的影响。

关键词: 充填体, 单轴荷载, 损伤变量, 损伤本构模型, 初始加载阶段, 压密系数, 损伤演化

Abstract:

With the increasing emphasis on mine safety exploitation and the environment protection,filling mining method has been widely applied in many underground mines around the world.The damage and strength criterion of backfill is the most basic research content of filling mining and the research on the damage and strength of backfill is the most basic research content of backfill material.Thus,it is of great significance to the underground engineering to determine the mechanical properties and damage characteristics of backfill materials.In oder to reveal the damage mechanism of backfill material under uniaxial loading,firstly,the five successive stages of the stress-strain curves of backfill material under uniaxial loading were analyzed,such as initial compaction stage(OA),elastic deformation stage(AB),strain hardening stage(BC),strain softening stage (CD) and residual strength stage(DE),then taking the damage variable as the internal variable that affecting the mechanical properties of backfill materials,and the classical damage constitutive model of backfill material under uniaxial loading was derived based on the statistical damage theory,maximum-tensile strain yield criterion and strain equivalent hypothesis.Due to the backfill material contains a large number of micro defects such as micro pores and micro cracks,and there is a compaction process of the backfill specimen in the initial loading stage,a compaction hardening coefficient was proposed and introduced to the classical damage constitutive model and the modified damage constitutive model was established,which makes up the defects that the classical damage constitutive model cannot explain the compaction process of backfill in initial compression stage.The modified damage constitutive model was used to fit a variety of experimental data and was compared with the fitted results of the classical damage constitutive model.The results show that the modified damage constitutive model can not only simulate the compaction process of the backfill specimen in the initial loading process,but also be consistent with the stress-strain experimental data,and the fitting results are much better than those of the classical damage constitutive model,which fully indicates the feasibility of the modified damage constitutive model.The influence of the change of fitting parameters on the shape of the fitting curves was also studied and the control variable method was used to change one of the parameters to study the change trend of the shape of the fitting curves.The results of this study show that three different types of fitting parameters have different effects on the shape of the fitting curves.

Key words: filling body, uniaxial loading, damage variables, damage constitutive model, initial loading stage, compaction coefficient, damage evolution

中图分类号: 

  • TD853

图1

充填体材料在单轴压缩条件下的经典应力—应变曲线"

图2

εc值的确定方法"

图3

单轴荷载下尾砂胶结充填体应力—应变试验数据及拟合曲线"

表1

尾砂胶结充填体拟合参数及相关物理力学参数"

参数数值参数数值
n0.858εc /(×10-20.326
a /(×10-20.584E/GPa0.413
m1.242R20.990

图4

不同灰砂比全尾砂充填体单轴压缩试验数据及拟合曲线"

表2

不同灰砂比全尾砂充填体拟合参数及相关物理力学参数"

灰砂比na /(×10-2mεc /(×10-2E /GPaR2
1∶40.7561.8761.5291.15610.1880.995
1∶60.8571.7541.3390.8940.1070.996
1∶80.8341.6601.3660.9340.0890.993
1∶100.8371.9291.7570.9340.0380.991

图5

不同质量浓度尾砂胶结充填体单轴压缩试验数据及拟合曲线"

表3

不同质量浓度尾砂胶结充填体拟合参数及相关物理力学参数"

胶结充填体 质量浓度/%na/ (×10-2mεc /(×10-2E/GPaR2
681.1801.0860.9720.4810.1520.988
701.3710.6870.7540.2070.1880.993
720.8610.9071.1470.5330.3070.982

图6

参数n对拟合曲线形状的影响"

图7

参数a对拟合曲线形状的影响"

图8

参数m对拟合曲线形状的影响"

Al-Rub R K A,Kim S M,2010.Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture[J].Engineering Fracture Mechanics,77:1577-1603.
Cheng Aiping,Dai Shunyi,Zhang Yushan,al et,2019.Study on size effect of damage evolution of cemented backfill[J].Chinese Journal of Rock Mechanics and Engineering,38(Supp.1):3053-3060.
Ghirian A,Fall M,2013.Coupled thermo-hydro-mechanical-chemical behaviour of cemented paste backfill in column experiments.Part I:Physical,hydraulic and thermal processes and characteristics[J].Engineering Geology,164:195-207.
Hou J F,Guo Z P,Liu W Z,al et,2020.Mechanical properties and meso-structure response of cemented gangue-fly ash backfill with cracks under seepage-stress coupling[J].Construction and Building Materials,250:118863.
Huang S B,Liu Q S,Cheng A P,al et,2018.A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application[J].Cold Regions Science and Technology,145:142-150.
Justo J,Castro J,Cicero S,al et,2017.Notch effect on the fracture of several rocks:Application of the theory of critical distances[J].Theoretical and Applied Fracture Mechanics,90:251-258.
Ke Yuxian,Wang Xinmin,Zhang Qinli,al et,2019.Strength determination of crude tailings backfill in deep mine based on non-linear constitutive model[J].Journal of Northeastern University(Natural Science),38(2):280-283.
Lemaitre J,1972.Evaluation of dissipation and damage in metals submitted to dynamic loading[J].Mechanical Behavior of Materials,76(6):540-549.
Lemaitre J,1985.A continuous damage mechanics model for ductile fracture[J].Journal of Engineering Materials and Technology,107(1):83-89.
Lin H,Xiong W,Xiong Z,al et,2015.Three-dimensional effects in a flattened Brazilian disk test[J].International Journal of Rock Mechanics and Mining Sciences,74:10-14.
Liu Yanzhang,Li Kaibing,Huang Shibing,al et,2019.Analysis of damage variables and specific energy evolution for cemented tailings backfill under uniaxial compression condition[J].Mining and Metallurgical Engineering,39(6):1-4.
Liu Zhixiang,Li Xibing,Dai Tagen,al et,2006.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics,27(9):1442-1446.
Ren X D,Li J,2013.A unified dynamic model for concrete considering viscoplasticity and rate-dependent damage[J].International Journal of Damage Mechanics,22(4):530-555.
Voyiadjis G Z,Kattan P I,2008.A comparative study of damage variables in continuum damage mechanics[J].International Journal of Damage Mechanics,18:315-340.
Wang Jie,Song Weidong,Tan Yuye,al et,2019.Damage constitutive model and strength criterion of horizontal stratified cemented backfill[J].Rock and Soil Mechanics,40(5):1731-1739.
Wang Y X,Shan S B,Zhang C,al et,2019a.Seismic response of tunnel lining structure in a thick expansive soil stratum[J].Tunnelling and Underground Space Technology,88:250-259.
Wang Y,Guo P,Lin H,al et,2019b.Numerical analysis of fiber-reinforced soils based on the equivalent additional stress concept[J].International Journal of Geomechanics,19(11):04019122.
Wang Yong,Wu Aixiang,Wang Hongjiang,al et,2019.Damage constitutive model of cemented tailing paste under initial temperature effect[J].Chinese Journal of Engineering,39(1):31-38.
Wu A,Wang Y,Wang H,al et,2015.Coupled effects of cement type and water quality on the properties of cemented paste backfill[J].International Journal of Mineral Processing,143:65-71.
Yang Shengqi,Xu Weiya,Wei Lide,al et,2004.Statistical constitutive model for rock damage under uniaxial compression and its experimental study[J].Journal of Hohai University(Natural Sciences),32(2):200-203.
Yi Xuefeng,Liu Chunkang,Wang Yu,2020.Experimental study on the fracture evolution of cemented waste rock-tailings backfill (CWRB) of metal ore using in-situ CT scanning[J].Rock and Soil Mechanics,41(10):3365-3373.
Zhang Chao,Yang Qijun,Cao Wengui,2019.Study of damage constitutive model of brittle rock considering post-peak stress dropping rate[J].Rock and Soil Mechanics,40(8):3099-3106.
Zhang Sherong,Song Ran,Wang Chao,al et,2019.Dynamic mechanical property analysis of roller-compacted concrete and damage constitutive model establishment[J].Journal of Central South University (Science and Technology),50(1):130-138.
Zhao Kui,Xie Wenjian,Zeng Peng,al et,2019.Experimental study on AE characteristics of cemented tailings backfill failure process with different concentration[J].Journal of Applied Acoustics,39(4):543-549.
Zhao Shuguo,Su Dongliang,Wu Wenrui,al et,2017.Study on damage model of backfill based on Weibull distribution under uniaxial compression[J].China Mining Magazine,26(2):106-111.
Zhou Y,Yu X,Guo Z Q,al et,2021.On acoustic emission characteristics,initiation crack intensity,and damage evolution of cemented paste backfill under uniaxial compression[J].Construction and Building Materials,269:121261.
程爱平,戴顺意,张玉山,等,2019.胶结充填体损伤演化尺寸效应研究[J].岩石力学与工程学报,38(增1):3053-3060.
柯愈贤,王新民,张钦礼,等,2019.基于全尾砂充填体非线性本构模型的深井充填强度指标[J].东北大学学报(自然科学版),38(2):280-283.
刘艳章,李凯兵,黄诗冰,等,2019.单轴压缩条件下尾砂胶结充填体的损伤变量与比能演化[J].矿冶工程,39(6):1-4.
刘志祥,李夕兵,戴塔根,等,2006.尾砂胶结充填体损伤模型及与岩体的匹配分析[J].岩土力学,27(9):1442-1446.
汪杰,宋卫东,谭玉叶,等,2019.水平分层胶结充填体损伤本构模型及强度准则[J].岩土力学,40(5):1731-1739.
王勇,吴爱祥,王洪江,等,2019.初始温度条件下全尾胶结膏体损伤本构模型[J].工程科学学报,39(1):31-38.
杨圣奇,徐卫亚,韦立德,等,2004.单轴压缩下岩石损伤统计本构模型与试验研究[J].河海大学学报(自然科学版),32(2):200-203.
易雪枫,刘春康,王宇,2020.金属矿尾废胶结充填体破裂演化过程原位CT扫描试验研究[J].岩土力学,41(10):3365-3373.
张超,杨期君,曹文贵,2019.考虑峰值后区应力跌落速率的脆岩损伤本构模型研究[J].岩土力学,40(8):3099-3106.
张社荣,宋冉,王超,等,2019.碾压混凝土的动态力学特性分析及损伤演化本构模型建立[J].中南大学学报(自然科学版),50(1):130-138.
赵奎,谢文健,曾鹏,等,2019.不同浓度的尾砂胶结充填体破坏过程声发射特性试验研究[J].应用声学,39(4):543-549.
赵树果,苏东良,吴文瑞,等,2017.基于Weibull分布的充填体单轴压缩损伤模型研究[J].中国矿业,26(2):106-111.
[1] 张泽群, 钟文, 杨华泽, 周伶杰, 林圣杰, 毛基腾, 赵奎. 分段空场嗣后充填法人工矿柱多源信息融合稳定性评价模型[J]. 黄金科学技术, 2024, 32(5): 894-904.
[2] 海龙, 鲍荣涛, 谭世林, 房祥龙. 分层尾砂胶结充填体力学特性及优化试验研究[J]. 黄金科学技术, 2023, 31(5): 763-772.
[3] 王文才,李俊鹏,王创业,陈世江,王鹏. 外荷载下青砂岩声发射特征及损伤演化规律[J]. 黄金科学技术, 2023, 31(3): 516-530.
[4] 杜广盛,陈世江,武海龙. 温度影响下花岗岩宏、细观力学性质演化规律[J]. 黄金科学技术, 2022, 30(6): 935-947.
[5] 苏华友,王永定,谭宝会,龙卫国,杨宁,张志贵,陈星明. 大面积胶结充填体诱导冒落机理及其发展过程研究[J]. 黄金科学技术, 2022, 30(5): 713-723.
[6] 赵奎,刘周超,曾鹏,龚囱. 单轴压缩下不同尺寸充填体能量损伤演化特征试验研究[J]. 黄金科学技术, 2022, 30(4): 540-549.
[7] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[8] 张钦礼, 余一波, 王道林. 龙首矿充填体悬臂结构的稳定性分析与评价[J]. 黄金科学技术, 2022, 30(2): 254-262.
[9] 范永亮, 崔继强, 张元坤, 李凤, 黄春云, 顾元统, 何建元. 混合粗骨料配比对充填体强度及浆体流动性能的影响规律[J]. 黄金科学技术, 2022, 30(2): 263-271.
[10] 何建元,李宏业,高谦,尹升华. 采矿废石—尾砂混合骨料在下向分层进路胶结充填采矿中应用的试验研究[J]. 黄金科学技术, 2021, 29(4): 564-572.
[11] 徐路路,张钦礼,冯如. 基于采场结构参数优化后的充填体强度数值模拟[J]. 黄金科学技术, 2021, 29(3): 421-432.
[12] 卢蓉,马凤山,赵杰,郭捷,顾金钟,黄业强. 充填体室内单轴压缩试验声发射指标特性分析[J]. 黄金科学技术, 2021, 29(2): 218-225.
[13] 宋春辉, 李祥龙, 王建国, 宋飞. 矿柱爆破回采对胶结充填体损伤影响试验研究[J]. 黄金科学技术, 2020, 28(4): 558-564.
[14] 寇永渊, 李光, 邹龙, 马凤山, 郭捷. 金川二矿区+1 000 m中段水平矿柱回采方法研究[J]. 黄金科学技术, 2020, 28(3): 353-362.
[15] 毛思羽, 曹平, 李建雄, 欧传景. 基于核磁共振T2谱图的裂隙砂岩疲劳损伤分析[J]. 黄金科学技术, 2020, 28(3): 430-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!