img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (4): 582-592.doi: 10.11872/j.issn.1005-2518.2021.04.212

• 采选技术与矿山管理 • 上一篇    下一篇

电厂灰渣制备井下膏体充填材料试验研究

赵鑫(),海龙(),徐博,程同俊   

  1. 辽宁工程技术大学力学与工程学院,辽宁 阜新 123000
  • 收稿日期:2020-12-08 修回日期:2021-04-15 出版日期:2021-08-31 发布日期:2021-10-08
  • 通讯作者: 海龙 E-mail:zhaoxinwy95@163.com;hailong8901@163.com
  • 作者简介:赵鑫(1995-),男,辽宁抚顺人,硕士研究生,从事电厂灰渣处置与综合利用研究工作。zhaoxinwy95@163.com
  • 基金资助:
    国家自然科学基金项目“随机扰动下深部采场煤岩结构时变模型及响应规律研究”(51474120);辽宁省教育厅高等学校基本科研项目“排山楼金矿尾矿胶结充填采空区围岩控制研究”(LJ2017FAL017)

Experimental Study on Preparation of Paste Filling Materials from Power Plant Ash

Xin ZHAO(),Long HAI(),Bo XU,Tongjun CHENG   

  1. School of Mechanics and Engineering,Liaoning Technical University,Fuxin 123000,Liaoning,China
  • Received:2020-12-08 Revised:2021-04-15 Online:2021-08-31 Published:2021-10-08
  • Contact: Long HAI E-mail:zhaoxinwy95@163.com;hailong8901@163.com

摘要:

为了探究不同灰渣对充填体强度的影响,将流化床底渣、流化床飞灰和粉煤灰按不同比例混合,作为充填骨料,普通硅酸盐水泥作为胶结材料,加水制备膏体材料,进行流动度测试和抗压强度试验。结果表明:(1)流化床灰渣中含有部分胶凝成分,粉煤灰具有减水作用和一定的火山灰活性,二者均为良好的井下充填材料。(2)当膏体材料含水率超过其饱和含水率时,膏体流动性会大幅提高,充填材料发生离析、脱水,导致充填体强度降低。(3)当流化床底渣、飞灰和粉煤灰配比为6∶2∶1,水泥含量为10%,料浆浓度为73%时,坍落度为20 cm,充填体28 d强度可达3.3 MPa。此配比在满足料浆流动度和充填体强度要求的同时,使充填成本大幅降低。(4)将上述配比作为对照组,进行级配优化试验,将原状底渣进行破碎后作为细骨料,以不同比例取代原状底渣。当底渣破碎至粒径小于等于5 mm,取代率为10%~15%时,充填体7 d强度达到2.4 MPa,28 d强度可达3.5 MPa,充填体强度明显提高。该研究结果为电厂灰渣在黄金矿山充填工程中的应用提供了参考和借鉴。

关键词: 膏体充填, 电厂灰渣, 配比试验, 含水率, 坍落度, 抗压强度, 级配优化

Abstract:

The application of power plant ash to mine goaf filling can enrich aggregate source and consume a large amount of solid waste,which has important social benefits.Power plant ash mainly refers to the ash produced by coal-fired power generation,which is a kind of bulk solid waste with the characteristics of large discharge and low utilization rate.The properties of ash produced by different types of power plants are very different,but they generally have certain pozzolanic activity and gelation characteristics,so they are good filling materials.In order to explore the influence of different ash residues on the strength of the filling body,fluidized bed bottom slag,fluidized bed fly ash and fly ash were mixed with different ratios as filling aggregate,ordinary silicate cement was used as cementation material,and add water to prepare paste material,then fluidity test and compressive strength test were carried out.The results show that:(1)The fluidized bed ash contains some cementation components,the fly ash has the water-reduction effect and the pozzolanic activity,both of which are good downhole filling materials.(2)When the moisture content of paste material exceeds its critical moisture content,the fluidity will be greatly improved,which will also lead to segregation and dehydration of the filling material,then reduce the strength of the filling body.(3) When the ratio of fluidized bed bottom slag,fluidized bed fly ash and fly ash is 6∶2∶1,cement content is 10%,the slurry concentration is 73%,the slump is 20 cm,and the 28 d strength of the filling body can reach 3.3 MPa.This ratio not only meets the requirements of slurry fluidity and backfill strength,but also greatly reduces the filling cost.(4)Taking the above ratio as the control group,the grading optimization experiment was carried out.The undisturbed bottom slag was broken,then the fine particles with different particle sizes and proportions were used as fine aggregate to replace the undisturbed bottom slag.When the particle size of the broken bottom slag less than or equal to 5 mm and the replacement rate is 10%~15%,the strength of filling body reaches 2.4 MPa on 7 day and 3.5 MPa on 28 day,and the strength is significantly improved.The experimental study of the paste filling material prepared from the ash residue of power plant with a specific ratio provides data support and theoretical basis for engineering application,which is of economic value and environmental protection significance.

Key words: paste backfill, power plant ash, proportioning test, moisture content, slump, compressive strength, grading optimization

中图分类号: 

  • X705

表1

电厂灰渣基本物理参数"

灰渣类型堆积密度/(g·cm-3比重含水率/%烧失量/%
流化床底渣0.962.530.797.75
流化床飞灰0.722.610.819.74
粉煤灰0.891.990.182.63

表2

流化床飞灰、粉煤灰和水泥细度测试结果"

材料类型细度/%试验方法
试验值1试验值2平均值
流化床飞灰43.4142.9643.1945 μm方孔筛余量
粉煤灰53.9252.2253.07
水泥3.364.163.76

图1

流化床底渣颗粒大小分布曲线"

图2

飞灰微观形貌图"

表3

各分组材料成分"

分组序号流化床底渣/%流化床飞灰/%粉煤灰/%水泥/%
150202010
260201010
35530510
45535010
56030010

图3

第3组材料坍落度试验图"

图4

试件制备及养护情况"

图5

第5组材料7 d抗压强度试验图"

图6

坍落度变化曲线图"

表4

各组材料流动性指标"

分组序号坍落度/cm含水率/%质量浓度/%
120.03673.5
220.03773.0
320.04071.4
420.04171.0
520.03972.0

表5

充填体强度试验结果"

分组序号配比抗压强度/MPa质量浓度/%
1 d3 d7 d14 d28 d
15∶2∶20.511.602.322.913.3473.5
26∶2∶10.531.622.372.943.3673.0
35.5∶3∶0.50.501.572.292.633.0371.4
45.5∶3.50.471.552.172.472.9171.0
56∶30.491.592.302.833.2572.0

图7

充填体抗压强度曲线"

表6

混合材料级配情况"

分组序号细骨料含量/%CuCc级配情况分组序号细骨料含量/%CuCc级配情况
第一组54.261.19不良第二组54.281.20不良
106.111.47良好105.131.25良好
159.151.86良好155.751.20良好
2010.961.17良好206.180.98不良
2512.721.35良好256.280.72不良
3013.660.90不良306.480.56不良

表7

级配优化试验结果"

序号细骨料粒径/mm细骨料占比/%质量浓度/%不同养护龄期的充填体抗压强度/MPa
1 d3 d7 d14 d28 d
1≤2573.00.451.512.152.482.94
2≤21073.00.511.582.272.563.26
3≤21572.70.491.542.232.503.13
4≤22072.50.451.542.032.412.85
5≤22572.50.431.511.892.272.68
6≤5573.00.551.642.422.963.35
7≤51073.00.521.672.473.113.56
8≤51572.70.581.712.493.173.61
9≤52072.70.551.532.252.853.32
10≤52572.50.531.492.192.632.97

图8

不同细骨料占比下充填体强度曲线图"

图9

充填体内部颗粒结构示意图"

Binay K D,Swapan K,Durjoy M,2009.Leaching of elements from coal fly ash:Assessment of its potential for use in filling abandoned coal mines[J].Fuel,88(7):1314-1323.
Cavusoglu I,Yilmaz E,Yilmaz A O,2021.Additivity effect on properties of cemented coal fly ash backfill containing waterreducing admixtures[J].Construction and Building Ma-terials,267:1-15.
General Administration of Quality Supervision,Inspection and Quarantine of the People’ s Republic of China,2017.Fly Ash Used for Cement and Concrete:[S].Beijing:Standards Press of China.
General Administration of Quality Supervision,Inspection and Quarantine of the People’s Republic of China,2008.Portland Cement for General Use:[S].Beijing:Standards Press of China.
Hai Long,Liang Bing,Dai Hongfeng,al et,2014.Study on the reasonable and rational proportional mixture of dry-mixed mortar with fly ash for brick-making[J].Journal of Safety and Environment,14(1):157-159.
Kurniawati M,Azhari N J,Kadja G T,al et,2021.Conversion of coal fly ash into advanced crystalline materials[J].IOP Conference Series:Earth and Environmental Science,623(1):1-7.
Lankapati H M,Lathiya D R,Choudhary L,al et,2020.Mordeniteâ type zeolite from waste coal fly ash:Synthesis,characterization and its application as a sorbent in metal ions removal[J].Chemistry Select,5(3):1193-1198.
Li Chuanying,Qi Wenchao,2016.Cement macadam filling technology[J].World Nonferrous Metals,(14):73-75.
Li Shiquan,Yu Xufeng,Cao Lejuan,al et,2019.Research of mixing ratio and fly ash modification of magnesium phosphate cement[J].Concrete,(4):111-113.
Liang Songqiao,1980.The scientific experiment of using coal ash of power plant as underground filling material[J].Coal Science and Technology,(9):66.
Liu Mengru,Yang Yadong,Yang Sujie,al et,2020.Research on status of comprehensive utilization of fly ash[J/OL].Industrial Minerals & Processing:1-5[2020-10-11]..
Mehmet S K,2018.Pulverized fuel ash cement activated by nanographite[J].ACI Materials Journal,2018,115(6):803-812.
Michal A G,Daria J N,Mariusz D,2019.The influence of fluidized bed combustion fly ash on the phase composition and microstructure of cement paste[J].Materials,12(17):2838-2851.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2019.Standard for Soil Test Method:[S].Beijing:China Planning Press.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2009.Construction Industry Standards of the People’s Republic of China:[S].Beijing:Standards Press of China.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2009.Standard for Test Method of Basic Properties of Construction Mortar:[S].Beijing:China Architecture and Building Press.
Ministry of Transport of the People’s Republic of China,2005.Test Rules for Cement and Cement Concrete for Highway Engineering:[S].Beijing:China Communications Press.
Radha R,Manish K J,2017.Effect of bottom ash at different ratios on hydraulic transportation of fly ash during mine fill[J].Powder Technology,315:1-36.
Ren Fengyu,Zhai Huichao,Cao Jianli,al et,2012.Study on technology of mined out area filling in Paishanlou gold mine[J].China Mining Magazine,21(1):72-74.
Senecal P K,Felix L,2019.Diversity in transportation:Why a mix of propulsion technologies is the way forward for the future fleet[J].Results in Engineering,4:1-11.
Tang Qian,2020.Research status of fly ash utilization and its application in environmental protection[J].China Resources Comprehensive Utilization,38(5):41-43.
Wang En,2016.Mineralogy properties comparison of PC fly ash and CFB fly ash[J].Clean Coal Technology,22(4):26-29.
Wang Yanan,Xiao Changlai,Liu Ting,al et,2013.Leaching experimental research on influence of ash storage field in a pow plant on groundwater fluorine pollution[J].Water Saving Irrigation,(5):40-42.
Wei Shaoqing,Tian Xiuqing,Yang Fengling,al et,2017.Effect of combustion on the characteristics of fly ash and slag in coal-fired power plants[J].Clean Coal Technology,23(6):83-89.
Ye Zhiyuan,Wang Qianqian,2020.Preparation and performance of aluminosilicate based solid waste cementitious materials[J].Gold Science and Technology,28(5):658-668.
Yi H,Luo Q M,Hu H L,2012.Situation analysis and countermeasures of China’s fly ash pollution prevention and control[J].Procedia Environmental Sciences,16:690-696.
Yi Longsheng,Xu Yuanhong,Zhao Lihua,al et,2020.Influencing factors for setting time of fly ash-based geopolymer[J].Mining and Metallurgical Engineering,40(1):114-117.
Yin Shenghua,Liu Jiaming,Chen Wei,al et,2020.Optimization of the effect and formulation of different coarse aggregates on performance of the paste backfill condensation[J].Chinese Journal of Engineering,42(7):829-837.
Zhang Xiaofang,Chen Ruimin,Jian Wenbin,2020.Study on water conversion law and solidification mechanism of cement-slag-fly ash solidified silt[J/OL].Journal of Engineering Geology:1-11.[2020-12-30]..
Zhao Jihui,Wang Dongmin,Hui Fei,al et,2014.Characterization and resource utilization of circulating fluidized bed ash of gangue power plant[J].China Mining Magazine,23(7):133-138.
Zhou X X,Shen J M,2020.Micromorphology and microstructure of coal fly ash and furnace bottom slag based light-weight geopolymer[J].Construction and Building Materials,242:1-10.
海龙,梁冰,戴宏锋,等,2014.粉煤灰普通砌筑干混砂浆合理配比研究[J].安全与环境学报,14(1):157-159.
李传迎,齐文超,2016.碎石胶结充填工艺[J].世界有色金属,(14):73-75.
李十泉,于旭峰,操乐娟,等,2019.粉煤灰改性磷酸镁水泥试验研究[J].混凝土,(4):111-113.
梁松乔,1980.用电厂粉煤灰作为井下充填材料的科学试验[J].煤炭科学技术,(9):66.
刘梦茹,杨亚东,杨素洁,等,2020.粉煤灰资源综合利用现状研究[J/OL].化工矿物与加工:1-5[2020-10-11]..
任凤玉,翟会超,曹建立,等,2012.排山楼金矿采空区充填技术研究[J].中国矿业,21(1):72-74.
汤倩,2020.粉煤灰利用研究现状及其在环境保护中的应用[J].中国资源综合利用,38(5):41-43.
王恩,2016.煤粉炉粉煤灰与循环流化床粉煤灰矿物学性质比较[J].洁净煤技术,22(4):26-29.
王雅男,肖长来,刘婷,等,2013.某电厂灰渣贮灰场对地下水氟污染影响的淋滤实验研究[J].节水灌溉,(5):40-42.
魏绍青,田秀青,杨凤玲,等,2017.燃烧工况对燃煤电厂灰渣理化特性的影响[J].洁净煤技术,23(6):83-89.
叶智远,王倩倩,2020.铝硅酸盐固废胶凝材料制备及其性能[J].黄金科学技术,28(5):658-668.
易龙生,许元洪,赵立华,等,2020.粉煤灰基地质聚合物凝结时间的影响因素研究[J].矿冶工程,40(1):114-117.
尹升华,刘家明,陈威,等,2020.不同粗骨料对膏体凝结性能的影响及配比优化[J].工程科学学报,42(7):829-837.
张小芳,陈瑞敏,简文彬,2020.水泥—矿渣—粉煤灰固化淤泥的水分转化规律及其固化机理研究[J/OL].工程地质学报:1-11.[2020-12-30]..
赵计辉,王栋民,惠飞,等,2014.矸石电厂循环流化床灰渣特性分析及其资源化利用途径[J].中国矿业,23(7):133-138.
中华人民共和国国家质量监督检查检疫总局,2017.用于水泥和混凝土中的粉煤灰:[S].北京:中国标准出版社.
中华人民共和国国家质量监督检查检疫总局,2008.通用硅酸盐水泥:[S].北京:中国标准出版社.
中华人民共和国交通部,2005.公路工程水泥及水泥混凝土试验规程:[S].北京:人民交通出版社.
中华人民共和国住房和城乡建设部,2009.建筑砂浆基本性能试验方法标准:[S].北京:中国建筑工业出版社.
中华人民共和国住房和城乡建设部,2009.中华人民共和国建筑工业行业标准:[S].北京:中国标准出版社.
中华人民共和国住房和城乡建设部,2019.土工试验方法标准:[S].北京:中国计划出版社.
[1] 李杰林, 李大千, 杨承业, 张童. 不同含水率下秦王川黄土抗剪强度与细观结构特征研究[J]. 黄金科学技术, 2024, 32(5): 860-870.
[2] 石英, 聂锐洋, 周诗彤, 陆思成, 卿子萱. 含硫酸盐废水对磷石膏胶结充填体材料性能的影响[J]. 黄金科学技术, 2024, 32(3): 416-424.
[3] 海龙,程同俊,徐博,赵鑫. 粉煤灰改良铁尾矿膏体充填材料试验研究[J]. 黄金科学技术, 2022, 30(5): 724-732.
[4] 徐先锋,邢鹏飞,汪泳,王岁红. 基于L型回弹仪的岩石力学特性试验研究[J]. 黄金科学技术, 2022, 30(4): 550-558.
[5] 刘业繁,石英. 磷石膏胶结充填体动态力学特性研究[J]. 黄金科学技术, 2022, 30(4): 574-584.
[6] 王仲辉,王千福,田亚坤,伍玲玲,禹雪阳,张志军. 干湿循环和含水率对尾砂压缩固结特性的影响研究[J]. 黄金科学技术, 2022, 30(1): 54-63.
[7] 张美道,饶运章,徐文峰,王文涛. 全尾砂膏体充填配比优化正交试验[J]. 黄金科学技术, 2021, 29(5): 740-748.
[8] 林斌,田竹华,陈雨漫. 含水率对重塑红黏土反复抗剪强度影响试验研究[J]. 黄金科学技术, 2021, 29(5): 680-689.
[9] 海龙,徐博,赵鑫. 建筑垃圾制备膏体充填材料骨料级配优化[J]. 黄金科学技术, 2021, 29(4): 573-581.
[10] 李怀鑫, 林斌, 陈士威, 王鹏. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449.
[11] 黄照东,张德明,刘一锴,张钦礼,王浩. 柠檬酸浸法预处理对磷石膏充填体性能的影响[J]. 黄金科学技术, 2020, 28(1): 97-104.
[12] 粟著,张德明,张钦礼. 金矿尾矿胶结充填试验及环境效应研究[J]. 黄金科学技术, 2019, 27(6): 912-919.
[13] 焦华喆, 靳翔飞, 陈新明, 杨亦轩, 王金星. 全尾砂重力浓密导水通道分布与细观渗流规律[J]. 黄金科学技术, 2019, 27(5): 731-739.
[14] 肖文丰,陈建宏,陈毅,王喜梅. 基于神经网络与遗传算法的多目标充填料浆配比优化[J]. 黄金科学技术, 2019, 27(4): 581-588.
[15] 赵建平,王明虎,赵奕翰. 含水率对砂岩动态拉伸强度的影响[J]. 黄金科学技术, 2019, 27(2): 216-222.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!