img

QQ群聊

img

官方微信

高级检索

黄金科学技术 ›› 2021, Vol. 29 ›› Issue (5): 669-679.doi: 10.11872/j.issn.1005-2518.2021.05.009

• 采选技术与矿山管理 • 上一篇    下一篇

单向受限应力下镐型截齿破岩特性及其影响因素分析

唐宇(),王少锋()   

  1. 中南大学资源与安全工程学院,湖南 长沙 410083
  • 收稿日期:2020-12-29 修回日期:2021-04-06 出版日期:2021-10-31 发布日期:2021-12-17
  • 通讯作者: 王少锋 E-mail:195512136@csu.edu.cn;sf.wang@csu.edu.cn
  • 作者简介:唐宇(1998-),男,湖南邵阳人,硕士研究生,从事深部硬岩破碎方面的研究工作。195512136@csu.edu.cn
  • 基金资助:
    国家自然科学基金项目“深部高应力下镐形截齿破岩特性及诱导调控机理”(51904333);“深部硬岩可切割性综合表征与靶向诱导致裂研究”(52174099)

Analysis on Rock Breakage Characteristic and Its Influence Factors of Conical Pick Under Uniaxial Confining Stress

Yu TANG(),Shaofeng WANG()   

  1. School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-12-29 Revised:2021-04-06 Online:2021-10-31 Published:2021-12-17
  • Contact: Shaofeng WANG E-mail:195512136@csu.edu.cn;sf.wang@csu.edu.cn

摘要:

基于刀具破岩的非爆机械化开采有望成为深部矿山开采的主要替代方法之一。矿岩可切割性是制约刀具破岩的关键因素,其受到受限应力条件和岩石性质的影响。因此,研究不同种类岩石在不同受限应力条件下的可切割性,可为机械刀具破岩提供理论依据和关键技术参数支撑。首先在不同受限应力条件下,对花岗岩、大理岩、红砂岩和磷矿石进行了截齿破岩试验。然后,以试验结果为基础,对脆性指数、受限应力条件与截齿破岩峰值载荷和破岩比能之间的关系分别进行了回归分析。最后,利用熵权法评价了岩石强度特性和受限应力条件对截齿破岩峰值载荷和破岩比能的影响权重。结果表明:所建立的回归模型具有良好的预测精度,单向受限应力和脆性指数对截齿破岩峰值载荷和破岩比能的影响均呈非线性变化;单向受限应力和岩石强度特性对截齿破岩性能均有显著影响,且单向受限应力的影响权重略大于岩石强度特性。研究结果可为深部矿山非爆机械化开采可行性判别以及破岩参数设计提供理论依据。

关键词: 深部开采, 非爆机械化开采, 截齿破岩, 单向受限应力, 可切割性, 熵权法

Abstract:

With the gradual depletion of shallow resources,deep mining is an inevitable trend. However,the traditional drilling and blasting method has been difficult to meet the requirements of continuous,large-scale,safe,efficient and green resource exploitation in deep mining. Non-explosive mechanized mining based on cutting tool rock breaking will be one of the main alternative methods for deep mining. The cuttability of deep hard rock is the key factor to determine the non-explosive mechanical rock breaking. Therefore,we carried out the rock breaking experiment by conical pick and studied the rock cuttability under different confining pressures and rock properties. The experiment was performed on the TRW-3000 true triaxial electro-hydraulic servo test system designed and manufactured by Central South University. The system can simulate the stress conditions under uniaxial,biaxial and triaxial confining stress conditions. The maximum static load applied in XY and Z directions is 2 000 kN,2 000 kN and 3 000 kN respectively. The rock samples utilized in this experiment are granite,marble,red sandstone and phosphate rock,all of which are cubic rock samples with the size of 100 mm×100 mm×100 mm. In order to simulate the stress on the pillar to be mined,uniaxial confining pressure was applied to the rock sample on the Y-axis. The range of confining pressure of granite and marble is 0~120 MPa,that of red sandstone is 0~90 MPa,and that of phosphate rock is 0~100 MPa. Then,the rock breakage load is applied to rock specimen by conical pick through Z-axis,so as to cut the rock sample vertically. In the whole experiment process,the system recorded the load change on rock in the loading process automatically. According to the curve change,the peak indentation force and corresponding penetration depth of the pick were obtained,and the cutting work required for rock breaking could be obtained. Then,the specific energy of rock breaking could be calculated according to the cutting work and the volume of the spalling rock block. In addition,according to the ISRM standards,the uniaxial compressive strength and tensile strength of four types of rocks were obtained by uniaxial compression test and Brazilian splitting test. Then,the brittleness index of rock was obtained. The uniaxial compressive strength,brittleness index,peak indentation force and specific energy were normalized. Through regression analysis,the regression models of the relationships among the peak indentation force,rock strength characteristics and confining stress conditions,as well as the relationships among specific energy,rock strength characteristics and confining stress conditions were obtained. Finally,the entropy weight method was used to evaluate the influence weights of rock strength characteristics and confining stress conditions on the peak indentation force and specific energy. Through the above experimental study,regression analysis,and the weight determination,the necessary theoretical basis can be provided for the feasibility evaluation of non-explosive mechanized mining and the design of rock breaking parameter in deep mine. This study has important guiding significance for the realization of non-explosive mechanized mining in deep hard rock.

Key words: deep mining, non-explosive mechanized mining, rock breakage, uniaxial confining stress, rock cuttability, entropy weight method

中图分类号: 

  • TD80

表1

岩样力学性质"

岩石样本单轴抗压强度σc/MPa单轴抗拉强度σt/MPa脆性指数B1脆性指数B2
花岗岩126.247.5616.6980.887
大理岩129.226.1820.9090.909
红砂岩97.795.3118.4160.897
磷矿石106.215.2420.2690.906

图1

截齿破岩峰值载荷回归模型(X轴脆性指数1)"

图2

破岩比能回归模型(X轴脆性指数1)"

图3

无量纲化截齿破岩峰值载荷回归模型(X轴脆性指数1)"

图4

无量纲破岩比能回归模型(X轴脆性指数1)"

表2

回归模型R2和RMSE值"

评价指标非无量纲化回归模型无量纲化回归模型
脆性指数1脆性指数2脆性指数1脆性指数2
Fc/kNEc/(10-3 J·cm-3Fc/kNEc/(10-3 J·cm-3Fc/F0Ec/E0Fc/F0Ec/E0
R20.80390.86950.78450.85730.87190.84900.81100.8235
RMSE27.14924.6928.46966.982.1719.372.6432.29

图5

非无量纲回归模型预测值与试验值对比"

图6

无量纲回归模型预测值与试验值对比"

表3

岩石性质和单向受限应力权重值"

影响权重非无量纲回归模型无量纲回归模型
脆性指数1脆性指数2脆性指数1脆性指数2
岩石性质0.4590.4500.4610.452
受限应力条件0.5410.5500.5390.548
Abu Bakar M Z,Gertsch L S,Rostami J,2014.Evaluation of fragments from disc cutting of dry and saturated sandstone[J].Rock Mechanics and Rock Engineering,47:1891-1903.
Balci C,2009.Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation: A case study in Kozyatagi-Kadikoy metro tunnel,Turkey[J].Tunnelling & Underground Space Technology, 24:423-435.DOI:https://doi.org/10.1016/j.tust.2008.12.001.
doi: https://doi.org/10.1016/j.tust.2008.12.001
Balci C,Tumac D,2012.Investigation into the effects of different rocks on rock cutability by a V-type disc cutter [J].Tunnelling and Underground Space Technology,30:183-193.
Barton N,1999.TBM performance estimation in rock using QTBM[J].Tunnels and Tunnelling International,9:30-34.DOI:http://doi.org/10.19476/j.ysxb.1004.0609.2019.10.18.
doi: http://doi.org/10.19476/j.ysxb.1004.0609.2019.10.18
Bilgin N,Algan M,2012.The performance of a TBM in a squeezing ground at Uluabat,Turkey[J].Tunnelling & Underground Space Technology,32:58-65.DOI:https://doi.org/10.1016/j.tust.2012.05.004.
doi: https://doi.org/10.1016/j.tust.2012.05.004
Bilgin N,Copur H,Balci C,2012.Effect of replacing disc cutters with chisel tools on performance of a TBM in difficult ground conditions[J].Tunnelling & Underground Space Technology,27:41-51.
Chen Jingtao,Feng Xiating,2006.True triaxial experimental study on rock with high geostress[J].Journal of rock mechanics and Engineering,25(8):1537-1543.
Chen L H,Labuz J F,2006.Indentation of rock by wedge shaped tools[J].International Journal of Rock Mechanics and Mining Sciences, 43:1023-1033.
Copur H,Aydin H,Bilgin N,al et,2014.Predicting performance of EPB TBMs by using a stochastic model implemented into a deterministic model[J].Tunnelling & Underground Space Technology, 42:1-14.DOI:https://doi.org /10.1016/j.tust.2014.01.006.
doi: https://doi.org /10.1016/j.tust.2014.01.006
Dogruoz C,2010.Effect of Pick Blunting on Cutting Performance for Weak-moderate Rocks[D].Turkey:Middle East Technical University.
Dogruoz C,Bolukbasi N,2014.Effect of cutting tool blunting on the performances of various mechanical excavators used in low- and medium-strength rocks[J].Bulletin of Engineering Geology and the Environment,73(3):781-789.
Du Kun,2013.Study on the Failure Characteristics of Deep Rock and the Mechanism of Strain burst Under True Triaxial Unloading Condition[D].Changsha:Central South University.
Evans I,1974.Relative efficiencies of picks and discs for cutting rocks[C]//Proceedings of the Third ISRM Congress of the International Society for Rock Mechanics.Washington,D C:National Academy of Sciences.
Feng Xiating,Chen Bingrui,Ming Huajun,al et,2012.Evolution law and mechanism of rockbursts in deep tunnels:Immediate rockburst[J].Journal of Rock Mechanics and Engineering,31(3):433-444.
Feng Xiating,Wang Yongjia,1998.New development in researching rockburst induced by mining at great depth and its control strategies[J].China’s Mining Industry,7(5):42-45.
Geng Q,Wei Z Y,Meng H,2016.An experimental research on the rock cutting process of the gage cutters for rock tunnel boring machine(TBM)[J].Tunnelling & Underground Space Technology,52:182-191.
Gong Qiuming,She Qirui,Hou Zhesheng,al at,2010.Experimental study of TBM penetration in marble rock mass under high geostress[J].Journal of Rock Mechanics and Engineering,29(12):2522-2532.
He Manchao,Miao Jinli,Li Dejian,et al., 2007. Experimental study on rockburst process of deep granite samples[J].Journal of Rock Mechanics and Engineering,26(5):865-876.
Hucka V,Das B,1974.Brittleness determination of rocks by different methods[J].International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,11(10):389-392.
Innaurato N,Oggeri C,Oreste P P,al et,2007.Experimental and numerical studies on rock breaking with TBM tools under high stress confinement[J].Rock Mechanics and Rock Engineering,40(5):429-451.
Li X B,Wang S F,Wang S Y,2018.Experimental investigation of the influence of confining stress on hard rock fragmentation using a conical pick[J]. Rock Mechanics and Rock Engineering,51:255-277.
Li Xibing,Cao Zhiwei,Zhou Jian,al et,2019.Innovation of mining models and construction of intelligent green mine in hard rock mine: In Kaiyang phosphate mine as an example[J].Transactions of Nonferrous Metals Society of China,29(10):2364-2380.DOI:http://doi.org/10.19476/j.ysxb.1004.0609.2019.10.18.
doi: http://doi.org/10.19476/j.ysxb.1004.0609.2019.10.18
Li Xibing,Gu Desheng,2002.Disaster control and fragmentation mutation of high stress in deep mining of hard ore and rock [C]//Xiangshan Science Conference.Science Frontier and Future (Volume6). Beijing:China Environmental Science Press:192-201.
McFeat-Smith I,Fowell R J,1977.Correlation of rock properties and the cutting performance of tunneling machines [C]//Proceedings Conference on Rock Engineering,Newcastle Upon Tyne.UK:British Geotechnical Society and Department of Mining Engineering.
Rostamsowlat I,Richard T,Evans B,2018.Experimental investigation on the effect of wear flat inclination on the cutting response of a blunt tool in rock cutting[J].Acta Geotechnica,14:519-534.
Sun Jinshan,Chen Ming,Chen Baoguo,al et,2011.Numerical simulaiton of influence factors for rock fragmentation by TBM cutter[J].Geotechnical Mechanics,32(6):1891-1897.
Wang S F,Li X B,Du K,al et,2018.Experimental investigation of hard rock fragmentation using a conical pick on true triaxial test apparatus[J].Tunnelling & Underground Space Technology,79:210-223.
Wang S F,Li X B,Yao J R,al et,2019.Experimental investigation of rock breakage by a conical pick and its application to non-explosive mechanized mining in deep hard rock[J]. International Journal of Rock Mechanics and Mining Sciences,122:104063.
Wang Shaofeng,Li Xibing,Gong Fengqiang,al et,2021. Breakage characteristics and mechanized mining experiment in deep hard rock[J].Journal of Central South Unive-rsity(Science and Technology),52(8):2772-2782.
Xia Yimin,Wu Yuan,Guo Jincheng,al et,2014.Numerical simulation of rock-breaking mechanism by gage disc cutter of TBM[J].Journal of Coal Industry,39(1):172.
Yagiz S,2008.Utilizing rock mass properties for predicting TBM performance in hard rock condition[J].Tunnelling and Underground Space Technology,23:326-339.
陈景涛,冯夏庭,2006.高地应力下岩石的真三轴试验研究[J].岩石力学与工程学报,25(8):1537-1543.
杜坤,2013.真三轴卸载下深部岩体破裂特性及诱发型岩爆机理研究[D].长沙:中南大学.
冯夏庭,陈炳瑞,明华军,等,2012.深埋隧洞岩爆孕育规律与机制:即时型岩爆[J].岩石力学与工程学报, 31(3):433-444.
冯夏庭,王泳嘉,1998.深部开采诱发的岩爆及其防治策略的研究进展[J].中国矿业,7(5):42-45.
龚秋明,佘祺锐,侯哲生,等,2010.高地应力作用下大理岩岩体的TBM掘进试验研究[J].岩石力学与工程学报,29(12):2522-2532.
何满潮,苗金丽,李德建,等,2007.深部花岗岩试样岩爆过程试验研究[J].岩石力学与工程学报,26(5):865-876.
李夕兵,曹芝维,周健,等,2019.硬岩矿山开采方式变革与智能化绿色矿山构建——以开阳磷矿为例[J].中国有色金属学报,29(10):2364-2380.DOI:http://doi.org/10.19476/j.ysxb.1004.0609.2019.10.18.
doi: http://doi.org/10.19476/j.ysxb.1004.0609.2019.10.18
李夕兵,古德生,2002.深井坚硬矿岩开采中高应力的灾害控制与碎裂诱变[C]//香山科学会议编.科学前沿与未来(第六集).北京:中国环境科学出版社:192-201.
孙金山,陈明,陈保国,等,2011.TBM滚刀破岩过程影响因素数值模拟研究[J].岩土力学,32(6):1891-1897.
王少锋,李夕兵,宫凤强,等,2021.深部硬岩截割特性与机械化破岩试验研究[J].中南大学学报(自然科学版),52(8):2772-2782.
夏毅敏,吴元,郭金成,等,2014.TBM边缘滚刀破岩机理的数值研究[J].煤炭学报,39(1):172.
[1] 李筱, 许钧, 张成旭, 隋来伦, 王在勇. 基于CWM-TOPSIS模型的金属矿山企业安全管控能力评价[J]. 黄金科学技术, 2024, 32(1): 100-108.
[2] 杨轶男, 胡建华, 周坦, 赵风文, 王牧帆. 基于改进DCNN法的微震信号自动识别模型及应用[J]. 黄金科学技术, 2023, 31(5): 794-802.
[3] 徐先锋,邢鹏飞,王岁红,汪泳. 基于博弈论G1-EW-TOPSIS法的岩体质量评价和应用[J]. 黄金科学技术, 2022, 30(5): 704-712.
[4] 郭对明,李国清,侯杰,胡乃联. 基于FLUENT的深井掘进巷道局部通风参数优化[J]. 黄金科学技术, 2022, 30(5): 753-763.
[5] 陈立强,赵国彦,李洋,毛文杰,党成凯,方博扬. 开挖卸荷扰动下的深部巷道支护及其效果评价[J]. 黄金科学技术, 2022, 30(3): 438-448.
[6] 傅璇,黄麟淇,陈江湛,吴阳春,李夕兵. 迎接深部开采高地温环境的挑战——岩石真三轴试验机地温模拟平台研究[J]. 黄金科学技术, 2022, 30(1): 72-84.
[7] 王少锋, 李夕兵. 深部硬岩可切割性及非爆机械化破岩实践[J]. 黄金科学技术, 2021, 29(5): 629-636.
[8] 景岳,王少锋,鲁金涛. 矿岩开挖松动区厚度预测及非爆机械化开采判据[J]. 黄金科学技术, 2021, 29(4): 525-534.
[9] 石勇,史秀志,丁文智. 基于改进熵权法—未确知测度模型的黄金洞尾矿库综合安全评价[J]. 黄金科学技术, 2021, 29(1): 155-163.
[10] 王猛, 史秀志, 张舒. 面向产能优化的地下金属矿山安全保障条件评价研究[J]. 黄金科学技术, 2020, 28(5): 753-760.
[11] 周科平, 侯霄峰, 林允. 基于综合决策云模型的围岩稳定性分级方法研究[J]. 黄金科学技术, 2020, 28(3): 372-379.
[12] 胡建华,徐朔寒,徐泽林,韩磊. 城市地下矿山采矿方法的数值与熵权耦合优选[J]. 黄金科学技术, 2019, 27(4): 513-521.
[13] 崔宇,李夕兵,董陇军,白吕. 玲珑金矿微震监测台网布设优化[J]. 黄金科学技术, 2019, 27(3): 417-424.
[14] 王春,王成,熊祖强,程露萍,王怀彬. 动力扰动下深部出矿巷道围岩的变形特征[J]. 黄金科学技术, 2019, 27(2): 232-240.
[15] 杨世兴,付玉华,占飞. 围压与料浆浓度对尾砂充填体峰后损伤演化研究[J]. 黄金科学技术, 2019, 27(1): 97-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!