黄金科学技术 ›› 2021, Vol. 29 ›› Issue (5): 680-689.doi: 10.11872/j.issn.1005-2518.2021.05.210
Bin LIN(),Zhuhua TIAN,Yuman CHEN
摘要:
红黏土性质的稳定与安全生产息息相关,抗剪强度作为红黏土强度特性之一,与红黏土的稳定性密切相关。为探究含水率对红黏土反复抗剪强度的影响,以山西长治地区的重塑红黏土为研究对象进行反复直剪试验。试验结果表明:无竖向压力时,随着剪切次数的增加,抗剪强度减小并趋于稳定值,第2次剪切达到抗剪强度时对应的剪切位移小于第1次剪切时的位移,稳定剪切时对应的剪切位移大于第1次剪切时的位移;抗剪强度与含水率呈负线性关系,且抗剪强度为土体的真黏聚力,随着含水率的增加先增大后减小。当施加竖向压力后,抗剪强度随着含水率的增加而减小;利用抗剪强度表达式拟合得到内摩擦角和黏聚力,其中黏聚力随着含水率的增加先减小后增大;通过真黏聚力计算得出新的内摩擦角,2种分析方法得出的内摩擦角基本接近且均随着含水率的增加而减小,减小幅度逐渐增大。定义黏聚力差异指数比来研究真黏聚力与黏聚力之间的差异,分析得到黏聚力与真黏聚力的差异指数比在0.75~9.96之间,当含水率为19.5%时黏聚力差异指数比达到最小。利用所建立的相关经验公式,能够为红黏土地区矿山岩土勘察、设计和开挖过程中土性参数的合理选取提供一定参考。
中图分类号:
Chen Hongbin,Chen Xuejun,Qi Yunlai,al et,2019.Influence of dry density and moisture content on shear strength parameters of remolded red clay soil[J].Journal of Engineering Geology,27(5):1035-1040. | |
Chen Jiayu,Liu Zhikui,2019.Strength change mechanism of undisturbed red clay and remolded red clay[J].Journal of Henan University of Science and Technology(Natural Science),40(3):53-59. | |
Chen Zhenghan,Qin Bing,2012.On stress state variables of unsaturated soils[J].Rock and Soil Mechanics,33 (1):1-11. | |
Cheng Yun,Wei Changfu,Niu Geng,2017.The effect of dry-wet cycle on the shear strength of red clay in karst area[J].Rock and Soil Mechanics,38(Supp.2):191-196. | |
Hu Xin,Hong Baoning,Du Qiang,al et,2009.Influence of water contents on shear strength of coal-bearing soil [J].Rock and Soil Mechanics,30(8):2292-2294. | |
Huang Kun,Wan Junwei,Chen Gang,al et,2012.Testing study of relationship between water content and shear strength of unsaturated soil[J].Rock and Soil Mechanics,33(9):2600-2604. | |
Li Chunhong,Kong Gangqiang,Liu Hanlong,2019.Study of temperature-controlled pile-red clay interface tests and stress-strain relationship[J].China Civil Engineering Journal,52(Supp.2):89-94,101. | |
Li Guangxin,2004.Advanced Soil Mechanics[M].Beijing:Tsinghua University Press. | |
Li Huaixin,Lin Bin,Chen Shiwei,al et,2020.Study on softening model and strength of red clay at different water content[J].Gold Science and Technology,28(3):442-449. | |
Li Xiaoli,Zhai Tao,Zhang Qiang,2015.Experiment on mechanical properties of Pisha-sandstone at recurrent shear[J].Transactions of the Chinese Society Agricultrual Engineering,31(21):154-159. | |
Haibo Lü,Zeng Zhaotian,Yin Guoqiang,al et,2012.Analysis of mineral composition of red clay in Guangxi [J].Journal of Engineering Geology,20(5):651-656. | |
Ly H B,Pham B T,2020.Prediction of shear strength of soil using direct shear test and support vector machine model[J].The Open Construction and Building Technology Journal,14(1):41-50. | |
Mu Rui,Guo Jianqiang,Huang Zhihong,al et,2018.Effect of uneven moisture content on shear strength of red clay[J].People’s Pearl River,39(6):63-66. | |
Nanjing Water Conservancy Research Institute,1999.Standard of soil test methods:[S].Beijing:China Planning Press. | |
Uyeturk C E,Huvaj N,2021.Constant water content direct shear testing of compacted residual soils[J]. Bulletin of Engineering Geology and the Environment,80:691-703. | |
Wang Haixiang,2018.Research on engineering properties of lateritic clay in Hezhou[J].Highway,63(1):13-19. | |
Xia Caichu,Song Yinglong,Tang Zhicheng,al et,2012.Shear strength and morphology characteristic evolution of joint surface under cyclic loads[J].Journal of Central South University(Science and Technology),43(9):3589-3594. | |
Xue Ke,Wen Zhi,Ma Xiaohan,al et,2019. Effect of freezing on microstructure of Qinghai Tibet red clay and Lanzhou silt[J].Glacial Frozen Soil,41(5):1122-1129. | |
Zhang Kunyong,Xu Na,Chen Shu,al et,2020.Experimental study on fully softened shear strength of expansive soli[J].Chinese Journal of Geotechnical Engineering,42(11):1988-1995. | |
Zhang Wenshu,Zhang Xifa,1991.Theoretical basis and method of soil shear strength index statistics [J].Hydrogeology ang Engineering Geology,(2):53-55. | |
Zhang Zelin,Wu Shuren,Tang Huiming,al et,2017.Dynamic characteristics and microcosmic damage effect of loess and mudstone[J].Chinese Journal of Rock Mechanics and Engineering,36(5):1256-1268. | |
陈鸿宾,陈学军,齐运来,等,2019.干密度与含水率对重塑红黏土抗剪强度参数影响研究[J].工程地质学报,27(5):1035-1040. | |
陈佳雨,刘之葵,2019.原状与重塑红黏土强度变化机理[J].河南科技大学学报(自然科学版),40(3):53-59. | |
陈正汉,秦冰,2012.非饱和土的应力状态变量研究[J].岩土力学,33(1):1-11. | |
程允,韦昌富,牛庚,2017.干湿循环作用对岩溶区红黏土剪切强度的影响[J].岩土力学,38(增2):191-196. | |
胡昕,洪宝宁,杜强,等,2009.含水率对煤系土抗剪强度的影响[J].岩土力学,30(8):2292-2294. | |
黄琨,万军伟,陈刚,等,2012.非饱和土的抗剪强度与含水率关系的试验研究[J].岩土力学,33(9):2600-2604. | |
李春红,孔纲强,刘汉龙,等,2019.桩—红黏土接触面温控测试及应力—应变关系研究[J].土木工程学报,52(增2):89-94,101. | |
李广信,2004.高等土力学[M].北京:清华大学出版社. | |
李怀鑫,林斌,陈士威,等,2020.不同含水率下红黏土软化模型及强度试验研究[J].黄金科学技术,28(3):442-449. | |
李晓丽,翟涛,张强,2015.反复剪切作用下砒砂岩土壤力学性能试验[J].农业工程学报,31(21):154-159. | |
吕海波,曾召田,尹国强,等,2012.广西红黏土矿物成分分析[J].工程地质学报,20(5):651-656. | |
穆锐,郭建强,黄质宏,等,2018.不均匀含水率对红黏土抗剪强度的影响研究[J].人民珠江,39(6):63-66: | |
南京水利科学研究院,1999.土工试验方法标准:[S].北京:中国计划出版社. | |
王海湘,2018.广西贺州红黏土的工程性质研究[J].公路,63(1):13-19. | |
夏才初,宋英龙,唐志成,等,2012.反复直剪试验节理强度与粗糙度变化的研究[J].中南大学学报(自然科学版),43(9):3589-3594. | |
薛珂,温智,马小涵,等,2019.冻结作用对青藏红黏土及兰州粉土微观结构的影响分析[J].冰川冻土,41(5):1122-1129. | |
张坤勇,徐娜,陈恕,等,2020.膨胀土完全软化强度指标试验研究[J].岩土工程学报,42(11):1988-1995. | |
张文殊,张喜发,1991.土的抗剪强度指标统计的理论基础及方法[J].水文地质工程地质,(2):53-55. | |
张泽林,吴树仁,唐辉明,等,2017.黄土和泥岩的动力学特性及微观损伤效应[J].岩石力学与工程学报,36(5):1256-1268. |
[1] | 刘伟, 闫晓宇, 刘庆朋, 孙欣然. 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024, 32(5): 871-881. |
[2] | 李杰林, 李大千, 杨承业, 张童. 不同含水率下秦王川黄土抗剪强度与细观结构特征研究[J]. 黄金科学技术, 2024, 32(5): 860-870. |
[3] | 王仲辉,王千福,田亚坤,伍玲玲,禹雪阳,张志军. 干湿循环和含水率对尾砂压缩固结特性的影响研究[J]. 黄金科学技术, 2022, 30(1): 54-63. |
[4] | 赵鑫,海龙,徐博,程同俊. 电厂灰渣制备井下膏体充填材料试验研究[J]. 黄金科学技术, 2021, 29(4): 582-592. |
[5] | 李怀鑫, 林斌, 陈士威, 王鹏. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449. |
[6] | 赵建平,王明虎,赵奕翰. 含水率对砂岩动态拉伸强度的影响[J]. 黄金科学技术, 2019, 27(2): 216-222. |
|